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Seqool - A Sequence Analysis Tool 

1. Overview 
 

Seqool is a sequence analysis tool designed primarily for searching biological signals in 

nucleic acid sequences, providing several methods for pattern analysis and the most common 

basic sequence statistics. It comprises methods for text search (IUPAC nucleic acid codes  are 

supported, such as ‘y’ for pyrimidines), and models for searching biological signals. The 

implemented models include profiles/position specific score matrices, profile hidden Markov 

models, maximum dependence decomposition models, and oligonucleotide frequency models. 

Models can be combined in several ways (e.g. by decision trees or backpropagation networks), 

allowing a combination of rather site specific models such as profiles and nucleotide 

composition in the proximity of a signal. Additional features include the calculation of sequence 

composition (GC, codon usage, nucleotide and oligonucleotide frequencies) and a manipulation 

and extraction tool for sequences and text. The major features of Seqool include: 

 

Basic sequence analysis: 

- Nucleotide composition, oligo-nucleotide composition 
- GC content, codon usage, codon preference 

- Over- or under-represented oligo-nucleotides 

- Calculation within windows of a given size or for whole sequences, for single sequences 
or several sequences together 

 

Signal search: 
- Exact text search, text search using IUPAC codes (e.g. “y” for pyrimidines), search of 

repeats, stop and start codons, restriction sites 

- Profiles (weight matrices/position specific score matrices) 
- Profile hidden Markov models 

- Maximum dependence decomposition 

- Oligo-nucleotide frequency models / models for sequence composition (e.g. GC, codon 
usage, codon preference, frequencies of nucleotides or oligo-nucleotides) 

- Search for RNA binding motifs (based on binding energy) 

 
Combination of models: 

- Decision trees 

- Neural networks (Backpropagation networks) 
- Model combinations by addition or subtraction of scores (Hybrid models) 

- Models for the distance between signals  
 

File format support: 

- Support of the most common sequence file formats, such as FastA, GenBank, GCG, 
EMBL, and plain sequences (raw). 

- A comprehensive sequence and text formation and extraction tool (FastAFormat) which 
allows the extraction of sequences from virtually any file format. 



Seqool  Overview 

 

  2 

The Seqool program package consists of two main applications, Seqool for the analysis of 

single sequences and SeqoolM for multiple sequences. A variety of independent applications 

allow the construction and combination of individual models, which can subsequently be 

applied for searching in the main applications: 

 

Main applications: 

- Seqool   Analysis of single sequences 

- SeqoolM  Analysis of multiple sequences  

 

For building single signal search models: 

- Profile Profiles (weight matrices/position specific score matrices)  

- PHMM Profile hidden Markov models  

- MDD A combination of several profiles using maximum dependence   
 decomposition 

- OFM A model assessing the frequency of oligonucleotides, GC, or codon  
 usage 

- RNAbind A simple model calculating the binding energy to a given target   
 oligonucleotide 

 

For combining and the classification single models: 

- DistM   Calculation of the position of the best hit found by a specific model  

- HyM  A simple combination of single models, summing up scores of single    
models 

- BPNet  A neural (backpropagation) network for the classification of signals 

- DecisionTree  A decision tree used for the classification of signals 

 

Sequence manipulation tool: 

- FastAFormat Extraction, manipulation, and formatting of sequence or text files 

Functions include: Extraction of sequences from text files, conversion of 
sequences to FastA format, filtering of sequences according to their length, 
creation of homologous or reverse strands, extraction of subsequences / 
truncation of sequences, extraction of columns, truncation of lines, 
extraction of substrings (optional conditions provided), filtering of lines 
(optional conditions provided), replacement of text / case conversion, 
extraction of random lines / sequences, etc. 
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2. Installation 
 

Download and installation 

Seqool is provided as a Win32 application running on Windows 2000 and Windows XP 

systems. The following steps describe the installation of the software. For downloading the 

Seqool program package it is necessary to register at the Seqool website. Registration offers 

several advantages to users: Besides the free download of the program package, users can 

download pattern recognition models and use them with Seqool on their local computers. 

Users may also upload their own models, if they are of scientific significance. 

 

1. Access the Seqool download area at http://www.biossc.de/seqool/download.html 

(registration/login required). 

2. Download the file “Seqool_install.exe”. 

3. Install Seqool on your computer by executing the file “Seqool_install.exe”. Follow all 

instructions during installation. 

 

Activation of the software 

When one of the programs Seqool or SeqoolM is started the first time after installation, an 

activation key is needed for activation of the software. The activation key can be obtained from 

the Seqool download area at http://www.biossc.de/seqool/download.html. 

 

1. Start Seqool or SeqoolM. The following screen shows up: 

 

2. Copy the registration code to the clipboard. 

3. Access the Seqool download area at http://www.biossc.de/seqool/download.html and 

select “Activation key”. 

4. When you enter the registration code and press “Get activation key” you will receive an e-

mail containing the activation key.  

5. Copy the entire activation key and paste it the screen which shows up when Seqool or 

SeqoolM is started the first time after installation (see above), and Press OK.  
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3. Analysis of a single sequences with Seqool  
 

Seqool and SeqoolM are the main application of the Seqool package. These programs 

provide a number of sequence analyses and text search functions, and allow to search for 

biological patterns with user build models. Most functions are identical in Seqool and SeqoolM 

(though SeqoolM provides some additional functions specifically for multiple sequences). 

However, the text output and display is optimized for multiple sequences in SeqoolM and for 

single sequences in Seqool. 

 

 

3.1. Basic orientation in Seqool 

Seqool provides three main program pages, one for viewing or editing the source file (Source), 

one for the graphic output (Graphics) and one for the text output (Text output). A panel for 

displaying hits of text or model searches (e.g. binding sites of restriction enzymes) is located at 

the top of the graphics page (see Figure 1). Below that panel, additional panels display results 

of sequence statistics or any other analysis (e.g. graphics for codon usage, stop codon search, 

etc.). When moving the mouse over one of these graphics, the position of the cursor within the 

sequence is displayed at the top of the graphics sheet, as well as an excerpt of the sequence at 

that position. The exact position of the cursor is indicated by a red mark (see Figure 2). 

 

Graphics can be copied to the clipboard or saved using the context menu. This menu appears 

after pressing the right mouse button when the mouse cursor is located above the respective 

graph.  

 

The text output page shows results in text-form, if text output was selected in the respective 

analysis (Figure 3). For analyses for which a graphical output is not meaningful (e.g. for 

calculation of the codon usage of a whole sequence) text output will always be provided, even if 

it was not explicitly selected. Tables in the text output sheet are separated by tab-stops in order 

to allow to transfer them easily to other computer applications, such as spreadsheet calculation 

programs, by copy and paste. The entire text output can be deleted by pressing the Clear 

button, or saved to a text file by pressing the button Save as. Word wrap adds line brakes to 

long lines. 
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Figure 1. The Graphics page displays hits of text or model searches, and graphics of several sequence 

statistics, such as codon usage, GC content, and others. 

 

 

 

Figure 2. Hits of text or model searches are displayed in a panel at the top of the Graphics page. When 

moving the mouse over this panel or any other box, an excerpt of the sequence around the position of 

the mouse cursor is displayed at the top of the Graphics page.  

 

 

 

Figure 3. The Text output page provides detailed information about the results of an analysis.  
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3.2. Opening files 

Seqool reads FastA, GenBank, EMBL, CGC, and plain sequence files. When a file is opened 

the sequence format is automatically determined. The raw sequence is displayed in a small 

window and the user is prompted to confirm the file format (or optionally change the sequence 

format, Figure 4). Once a file is opened, information about the sequence is displayed at the top 

of the window, just below the tool buttons (including the sequence length, the format, the 

molecule, and the ID or locus information; see Figure 5). This information can be hidden by 

deselecting the menu option View|Show sequence information. 

 

 

 

 

Figure 4. The sequence dialog for confirming or changing the file format of files opened with Seqool. 

 

 

 

 

Figure 5. Information about the name, length, molecule, and format of a sequence is shown at the top of 

the window of Seqool. 
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3.3. Sequence composition 

3.3.1. Base composition, GC content, nucleotide/din ucleotide frequencies 

For analysing base composition, nucleotide or dinucleotide composition press the button       or 

select Statistics|Base composition in the menu. A new window with several options appears 

(Figure 6). In this window select first which statistic to calculate, i.e. GC content, nucleotide 

frequencies, or dinucleotide frequencies. Then select if the respective statistic shall be 

calculated for a sliding “window” or for the whole sequence. If a sliding window is used, the 

statistic is calculated for each subsequence of a specific length, e.g. 30 nt (the “window”). After 

each calculation, the window is moved to the right by a given amount, e.g. 1 nt (the step), and 

the statistic is calculated again for the new window. This procedure is repeated until the window 

has slided over the whole sequence. When using a sliding window specify the width of the 

window and the amount the window is moved after each calculation.  

 

Optionally select the option Text output for more detailed information, e.g. specific values for 

each position of the sequence. 

 

  

 

Figure 6. The window for calculating base composition, GC content, and dinucleotides frequencies. 
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3.3.2. Codon usage, codon preference 

Codon usage measures reflect the probability that a sequence is coding. They are calculated 

using codon usage tables, which are available for many organisms. In Seqool, a codon usage 

table for humans is used by default after installation, however tables for other species can be 

applied too (see below). For analysing codon usage or codon preference press the button  

or select Statistics|Codon usage in the menu. The subsequently appearing window shows 

several options (Figure 7). First, choose if codon usage or codon preference shall calculated. 

Codon usage reflects the probability that a sequence is coding in a given reading frame. Codon 

preference takes only the uneven use of synonymous codons into account (Gribskov et al. 

1984). Codon usage and codon preference are usually calculated for reading frames, thus the 

option Calculate for frames should normally be activated (otherwise values are calculated 

regardless of frames). Select if the respective statistic shall be calculated for a moving “window” 

or for the whole sequence. If a window is used, the statistic will be calculated for each 

subsequences within a sliding window of a given length, e.g. 50 codons (the “window”). After 

each calculation the window is moved to the right by a given amount, e.g. 3 codons, and the 

statistic is calculated again for the new window. This procedure is repeated until the window 

has slided over the entire sequence. When using a sliding window specify the width of the 

window and the amount the window is moved after each calculation. Optionally select the 

option Text output for more detailed information, e.g. specific values for each position of the 

sequence. 

 

 

Figure 7. Options for calculating codon usage and codon preference. 

 

For changing the currently used codon usage table press the button CU table, which opens a 

new window displaying the current codon usage table. This table lists all codons, the frequency 
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of each codon (per 1000), the frequency relative to all synonymous codons, and the number of 

synonymous codons. Codon usage tables for other species can be loaded by pressing Open 

(make sure to provide tables with an identical format as the default table, separating column 

with spaces!). A codon usage table can be used as default by pressing Set as default, so that it 

is automatically loaded at the next program start. Alternatively, a default codon usage table can 

be specified in the Configure-dialog (see menu item File|Configure …).  

 

 

 

Codon usage  

Codon usage is calculated as the log-likelihood for a sequence to be coding, based a codon usage table 

which contains the frequencies of codons in coding regions of a species. Codon usage is calculated as 

follows: 
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Pcoding(Ci) is the probability (or frequency) for an observed codon Ci to be coding, Pnot coding(Ci) is the 

probability of the observed codon not to be coding (i.e. 1/64 = 0.0156 assuming a random codon usage 

in non-coding sequences), n is the number of codons in the sequence (in a given reading frame. For 

example, the codon usage for the first reading frame of the sequence AGGTAT is calculated as follows 

(assuming a human codon usage): 
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Codon preference  is the log-likelihood for a sequence to be coding based on the uneven use of 

synonymous codons, i.e. different codons coding for one and the same amino acid. This statistic is 

calculated as follows:  
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Pcoding(Ci) is the probability for an observed codon Ci to be used in favour of the its synonymous codons 

(used with the cumulative probability 1 - Pcoding(Ci) ) when the sequence is coding. mi is the number of 

synonymous codons for a given codon j, n is the number of codons in the sequence. 
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3.4. Searching for patterns 

3.4.1. Text search  

3.4.1.1 Introduction 

Text search provides a simple way to search for patterns. Text search in Seqool is facilitated 

by the use of IUPAC nucleic acid codes, such as ‘y’ for pyrimidines, or ‘s’ for strong bases (G or 

C). For example, searching for the string ‘yyyy’ will identify most polypyrimidines. Seqool 

implements two methods for text search. One method uses a suffix tree, which also allows to 

identify repeated elements, the other methods uses the standard Knuth-Morris-Pratt search 

algorithm. Both methods perform equally well in most cases. However, when searching for 

many signals, the suffix tree method may be more effective. 

 

3.4.1.2 Basic text search 

Open the text search dialog by pressing the button   or by selecting Search|Text search in 

the menu. The search window provides a number of option (Figure 8). The easiest way to 

search for a subsequence is to enter the search string, i.e. the subsequence, in the left column 

of the table (optionally a description can be provided in the right column for each search string; 

this description will appear in the graphical display of the hits, see Figure 9). If IUPAC codes 

are used, make sure to activate the option Use IUPAC nucleic acid codes. A list of all IUPAC 

nucleic acid codes can be displayed by pressing on the blue arrows behind the check box Use 

IUPAC nucleic acid codes. Start the search by pressing the Search button. Subsequently hits 

are displayed in the hit panel at the top of the graphics page. 

 

 

Figure 8. The text search dialog of Seqool supports IUPAC nucleic acid codes and a search for repeats. 
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Figure 9. Hits are displayed in the hits panel at the top of the graphics page. When moving the mouse 

over a hit, a tool tip shows displays additional information of each hit (the description of the search 

pattern and the position of the hit). 

 

3.4.1.3 Types – Frequently used / alternative search-patterns 

Introduction  

Frequently, it will be necessary to search for the same patterns routinely. For such cases 

search types can be created. Types can be selected rapidly in the text search window and they 

may contain more than one search string. For example, the type ‘Stop codon’ allows to search 

for all stop codons and includes all three stop codons as search strings, i.e. TAA, TGA, and 

TAG. Additionally, a specific colour can be assigned to each type for displaying hits (e.g. the 

colour red for the type ‘Stop codon’). 

 

Searching with types 

For searching with a type open the text search window by pressing the button   or by selec-

ting Search|Text search in the menu. Then select a type in the Types box on the left below the 

main search table. Several types are already defined after installation of Seqool. Select for 

example the type ‘EcoRI’ and press the button Select type. Subsequently a new entry is 

automatically added to the search table: #ecori, with the description ‘EcoRI’. Pressing the 

Search button will now search for all restriction sites of the enzyme EcoRI. 

 

Creating new types 

Search types are created by pressing the button Define type, which opens a new window 

(Figure 10). The name of a new type, e.g. ‘Stop codon’, is entered at the top of this window (in 

the box Type name). The search patterns are entered in the main table (for the three stop 

codons the search patterns are ‘taa’, ‘tag’, and ‘tga’). Optionally a colour can be selected for 

displaying hits. For example, select the colour red in the Type colour box in order to display 

stop codons red.  

 

A final option determines if hits of the current type will be displayed only if they occur in a given 

reading frame (which is appropriate for stop codons) or if they shall always be displayed (as in 

the case of restriction enzymes), regardless of the reading frame (if hits are displayed for the 
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respective reading frame only then hits can be displayed for each frame separately, see option 

Frame at the top of the Graphics result sheet). Finally, a type is created by pressing the Add 

type button (other types can be deleted by selecting a respective type and pressing the Delete 

type button). It is important to note that new types are not save d by default. For making 

types accessible at the next program start types ha ve to be saved in a type file.  Type files 

include a collection of types. To save changes in a type file after the creation of a new type 

press Save type file. For opening a type file press Open type file. When starting Seqool a type 

file is loaded by default. This default file can be selected in the menu File|Configure).  

 

 

 

Figure 10. The dialog for defining search types. Search types are used for searching routinely. Search 

types may include several search patterns, as in this example for stop codons. 

 

3.4.1.4 Searching for repeats 

Before searching for repeated subsequences make sure to apply suffix tree search. Activate 

the option Find repeats of length and specify the minimum and maximum length of the repeats 

to find. Finally press the Search button. Repeats are always shown in grey colour in the hit 

panel of the graphics page. The exact sequence of repeats is shown as a tool tip when the 

mouse cursor is moved over the respective shape in the hit panel. 

 

3.4.1.5 Additional options 

Several options in the text search window allow to customize the graphical output and the text 

output:  
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Add matches to sequence graph  - Usually previous hits displayed in the hit box are erased  

  before displaying new results searching. Activation of this  

  option prevents previous hits to be erased. 

Text output         - Hit positions are also printed in the Text output page.  

Display hits only for selected frames - Hits can be showed only for a specific frame, which is  

  selected at the top of the Graphics page. This option  

  is useful e.g. for stop codons, which are frame dependent. 

Shape height        - Define the height of the shape for depicting a hit in pixels. 

Default shape colour      - Define the colour of the shape for depicting a hit. This  

  option does not apply to search types and repeats. 

 

3.4.2. Stop codon search 

 Seqool provides a convenient additional option for displaying stop codons in all three reading 

frames by pressing the button or by selecting Search|Search for stop codons in the 

menu. In the following dialog (Figure 11) it can be specified if the stop codons of any frame are 

displayed in the same colour (red), or if different colours are used, which correspond to those 

colours used in codon usage graphs (this option facilitates an easier identification of open 

reading frames or exons). Additionally the height of graphically displayed stop codons can be 

defined. For an example of the stop codon graphic see Figure 12. 

 

 

 

Figure 11. The dialog for stop codon search. 

 

 

Figure 12. Example of the graphical display of stop codons. Stop codons are displayed for each reading 

frame.  
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3.4.3. Searching with pattern recognition models 

3.4.3.1 Introduction 

The Seqool program package provides separate modules for creating a variety of pattern 

recognition models, such as position specific score matrices (weight matrices), profile hidden 

Markov models, and models for combining models, such as decision trees or neural networks. 

Modules for building pattern recognition are started by selecting the respective component in 

the Tools menu or by using the respective tool button (Figure 13). All models can be used for 

searching in Seqool and SeqoolM. 

 

 

 

Figure 13. Tool buttons for starting program components for signal-recognition models. 

 

3.4.3.2 Basic search 

Pressing the button (or selecting Search|Model search in the menu) opens the model 

search dialog (Figure 14). When searching with a specific model, only models contained in the 

default model directory are listed. This default directory can be changed permanently in the 

main menu (menu File|Configure…) or only temporally (until exiting the program) by pressing 

the Model directory button. If a new model was saved in the model directory while the model 

search dialog was still open it may not be listed in the list of models. In this case press  to 

actualize the list of available models. 

 

For selecting a model, choose one of the models listed in the Select model box and press the 

button Add model. Additional information about the model is displayed below the Select model 

box, such as the model type, the models name, the description, and the file name (see Figure 

14). Press Search for starting the model search. 
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Figure 14. The model search dialog. Pre-processing models can be added before search with the main 

model. 

 

3.4.3.3 Adding a pre-processing model 

I some cases it might be useful to add a pre-processing model before searching with the main 

model. For example, when searching for acceptor splice sites, it will be faster to search for all 

AG dinucleotides first and then to apply a more complex model only to those sites, where an 

AG dinucleotide was found. This may significantly reduce the overall time for searching. A pre-

processing model is added by activating the check box Preprocess and by selecting a model in 

the respective Select model box. Confirm a selected model by pressing the button Select 

model. Make sure that the search position of the pre-proce ssing must match the search 

position of the main model . For example, when the main model analyses a region between –

10 and +10 nt relative to the putative signal, then the pre-processing model must match this 

region, i.e. the pre-processing model must also start at the position –10 nt (but it does not 

necessarily end at the position +10 nt). Hybrid models (see chapter 6.1) can be used to adjust 

the range of a pre-processing model. Although the component Hybrid models is intended for 
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combining several models, it provides an easy method for shifting the position of a model (see 

figure Figure 15). For details refer to chapter 6.1, which provides a detailed description of 

Hybrid models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. a) A pre-processing model must match the range of the main model. b) The component 

Hybrid models allows to relocate a pre-processing model so that it matches the range of the main model. 

In this example the pre-processing recognizes the AG dinucleotides. In order to match the search 

position of this model to the search position of the main model a hybrid model (including the model for 

AG) is used to shift the pre-processing model to the left back to the correct search position. 

 

 

When using a pre-processing model, the score threshold may be changed by the user in order 

to increase or decrease the specificity. The default threshold shown when selecting a model 

corresponds to the original value given in a model. 

 

As for the main model list before, the model directory can be changed temporally by pressing 

the Model directory button and the list of models can also be actualised by pressing . 
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3.4.3.4 Additional options 

Several options allow to customize the graphical of text based output:  

 

Add matches to sequence    - Usually previous hits displayed in the hit box are erased  

  before displaying new results searching. Activation of this  

  option prevents previous hits to be erased. 

Display colour intensity according   - The colour of graphically displayed hits is modified depen- 

to score/confidence        ding on the score of the hit (or confidence in the case of  

  neural networks). A dark colour indicates a high score,  

  while a light colour indicates a low score 

Display hits only for selected frames - Hits can be showed only for a specific frame, which can be  

  chosen at the top of the graphics result sheet. This option  

  is useful e.g. for stop codons, which are frame dependent. 

Text output         - Hit positions are also printed in the text output sheet.  

Shape height        - Define the height of the shape for depicting a hit in pixels. 
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3.5. Additional functions 

3.5.1. Exporting sequences 

Sequences can be converted to the most common sequence formats using the menu option 

File|Export sequence… . Available sequence formats include FastA, GenBank, EMBL, CGC, 

and plain sequence files (raw sequence files). Select the desired format in the Sequence format 

box and press OK to save. 

 

3.5.2. Creating subsequences 

For large sequence the Sequence display in Seqool is compressed in order to allow to display 

the whole sequence within one panel. It may therefore be useful to copy a subsequence, e.g. 

the region of a putative signal, in a new window in order to study it in more detail. 

Subsequences are selected by moving the mouse across the region of the sequence which 

shall be copied (in the hits panel at the top of the graphics page) while holding down the left 

mouse button. A blue line below the hits-box indicates the selection. After releasing the mouse 

button a window opens which allows to adjust the selection and to copy the respective 

subsequence into a new window (the latter option is also available in the menu: Edit|Copy 

selection into new file). 

 

 

Figure 16. A subsequence can be marked (blue line) by moving the mouse over a part of the sequence 

while holding down the left mouse button. 
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3.6. Customizing Seqool 

3.6.1. Graphical output 

The panels containing the graphical output of an analysis can be deleted by pressing the small 

 at the top left corner (Figure 17) of the panels. Graphics can be rearranged using the small 

flash buttons � or � on the top and bottom left side of the graphics (Figure 17). These buttons 

allow to switch a graphic panel upwards or downwards, respectively. 

 

 

Figure 17. Buttons for closing and moving graphic panels. 

 

3.6.2. Configuring Seqool 

Basic settings can be customized using the menu option File|Configure… . All options listed in 

the configure window (Figure 18) are permanent, i.e. the respective setting is loaded by default 

every time the program is started. The default type file refers to the file containing all types 

which can be used for text search (see chapter Searching with types). The codon usage file 

defines which file is used for the calculation of codon usage of codon preference indices. The 

model directory determines which folder is used for searching with pattern recognition models 

(when using a model comprising several submodels please remember that all sub-models must 

be provided in the same directory as the main model). Finally, it can be selected how many 

recently opened files are displayed in the file menu.  

 

 

Figure 18. The dialog for customizing basic settings of Seqool. 
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4. Analysis of multiple sequences with 
SeqoolM  

 

SeqoolM provides almost the same functionality as Seqool, such as codon usage, GC content, 

or text and pattern search. However, the display of results is optimised for the analysis of 

multiple sequences. Additionally, SeqoolM offers analyses which are more relevant for multiple 

sequences, such as the analysis of over- or under-represented words (i.e. short 

subsequences), and it provides several filtering options, which can be used for extracting only 

sequences meeting certain criteria (e.g. a sequences with a GC content of at least 0.5). 

 

4.1. Basic orientation in SeqoolM 

SeqoolM provides two main tab sheets, one for the graphical output (Graphics) and one for the 

text output (Text output). The graphical results tab sheet consists of two parts: A hit-panel for 

displaying hits of text or model searches (and also searches for over- or under-represented 

words, see Figure 19) at the top, and below a box for displaying sequence statistics, e.g. codon 

usage or GC content. When moving the mouse over one of the graphics, the respective 

position in the sequence is displayed (see Position in Figure 19), as well as the number of 

sequences having the respective length (since a dataset may contain sequences of different 

length, the right side (5’-end) of the sequences may be represented by a lower number of 

sequences than the left (3’-end) side). Similarly, in the hit-box for text or model search grey 

lines indicate the shortest and the longest sequences (Figure 20).  

 

Graphics can be copied or saved by pressing the right mouse button above the respective 

graph. The context menu provides options for saving a graph or for copying it to the clipboard. 

 

The text output sheet contains all results in text-form, if text output was selected in the 

respective analysis (Figure 21). For some analyses text output will always be provided (e.g. for 

calculation of the codon usage of all sequences). Tables in the text output sheet are separated 

by tab-stops in order to allow to transfer them easily to other computer applications by copy and 

paste. All text output can be deleted using the Clear button, or saved to a text file using the 

button Save as.  
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Figure 19. The Graphics page displaying hits of text searches, model searches, or searches for over- or 

under-represented words (top), and graphics for sequence statistics, such as codon usage, GC content, 

and others (below). 

 

 

 

Figure 20. In the hit panel for text or model searches, grey lines indicate the length of the shortest and 

longest sequences in the data set. 

 

 

 

 

Figure 21. The Text output page provides detailed information (optional) about the results of an analysis. 

Hits of text or 
model search 
(or search for 
over-/under-
represented 
words) 

Graphics for 
various 
sequence 
statistics 
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4.2. Opening files 

FastA files are opened using the menu item File|Open or by pressing the file open button. 

Before loading a file, FastA files are displayed in a separate window for verification. If files have 

been correctly read, press OK. Figure 22 shows an example of the verification window for the 

following three sequences: 

 

 
> Sequence A 
agggtaggcaggtggctcctctagccccctccacccatcacaggccccaat atgattctcttcctggcaggtgacgactgacttgcggcagaag 
gcagctggagagctgctcccaaaaaagactgatccccagcctctcccttcc ttctttgcagtaagaacctcacatggcgggacatgcaacacct 
tccacccatcacaggccccaatatgattctcttcctggcaggtgacgactg acttgcggcagaagtgcacggagtctcacacgggcacctgcag 
aaaaagactgatccccagcctctcccttccttctttgcagtaagaacctca catggcgggacatgcaacacctggtggtacagacctcgattgc 
agtaagaacctcacatggcgggac 
> Sequence B 
gcccttagggcagctggagagctgctcccaaaaaagactgatccccagcct ctcccttccttctttgcagtaagaacctcacatggcgggacat 
gcagctggagagctgctcccaaaaaagactgatccccagcctctcccttcc ttctttgcagtaagaacctcacatggcgggacatgcaacacct 
ggtggtacagacctcgatcgctaaactggagagctgctcccaaaaaagact cctaagaacctcacatggcgggacatgctaagaacctcacatg 
gcgggacatgcgatccccagcctctcccttccttctttgcagtacacatgg cgggacatgcaacacctggtggtacagacctcgactgctgctg 
tggtacagacctcgacaaccacgcaccaccactacttggttgtgagggcag ctggagggagctgctcccaaaaaagtgtgtgactgatccccag 
cctctcccttccttctttgcagtaaga 
> Sequence C 
gctcgtatatctcgtagctgactgactcgcgcgcgctctccgtctactatc tactatcgctgatgctgctctatatctcgatcgatgctagcta 
actacgtacgtagctagctatcgatcgtgattatcatgctagctagcactc tcatgctgctagctccccccccccccctgatgctgctgtgatg 
acctctctatcgctaatatcgtracgtagatctacgactagatatatatcg ctcagtctagctacactctcgatcgatcgcgcgctatctcgct 
acatgctgagtgtagctctcgatgctgatcgatgctagctgactgatcgat cgctctctcccccctatatctcgatctctctctccccccccca 
acccggctagtcgtctacatctctagtggcg 

 

 

 

 

Figure 22. The open dialog for verification of FastA files opened with SeqoolM. 

 

In the window for verification of the opened sequences the option Display sequences on a 

separate page allows to show all single sequences on a separate page (see Figure 22). When 

this option is activated a new page apart from the Graphics and the Text output pages will show 

a list of all sequences. 
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After opening a multiple sequence file information about the sequences is displayed at the top 

of the window (including the number of sequences in the file, the molecule, and the length of 

the shortest and the longest sequence; see Figure 23). This information can be hidden by 

deselecting the menu option View|Show sequence information. 

 

 

 

Figure 23. Information about the name, number of sequences, molecule, and length of the shortest and 

longest sequence is shown at the top of the window of SeqoolM. 
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4.3. Sequence composition 

4.3.1. Base composition, GC content, nucleotide / d inucleotide 
frequencies 

For analysing base composition, GC content, nucleotide or dinucleotide composition press the 

button       or select Statistics|Base composition in the menu. The following window offers 

various options (Figure 24). First, choose to calculate either GC content, nucleotide 

frequencies, or dinucleotide frequencies. Select if the respective statistic shall be calculated for 

a moving “window” or if a single value shall be calculated for a given range of the sequences.  

If a window is used, the statistic will be calculated for each subsequences within a sliding 

window of a given length, e.g. 30 nt (the “window”). After each calculation the window is moved 

to the right by a given amount, e.g. 1 nt, and the statistic is calculated again for the new 

window. This procedure is repeated until the window has slided over the entire sequence. 

When using a sliding window specify the width of the window and the amount by which the 

window is moved after each calculation. Optionally select the option “text output” for more 

detailed information, e.g. the values for each position of the sequence. 

 

 

 

Figure 24. The dialog box with several options for calculating base composition, nucleotide and 

dinucleotide composition, and GC content. 
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For calculating a statistic only for a given range specify the range (settings from and to; 

entering ‘0’ in the last field will calculate the statistic until the end of each sequence). Those 

sequences with a value below or above a certain threshold can be saved in a separate file 

(FastA format). This allows to split a dataset, for example according to GC content (see 

example in Figure 25).  

 

 

 

Figure 25. Example for extracting sequences with a GC above 0.5. Sequences are saved in FastA 

formatted file. 

 

4.3.2. Codon usage, codon preference 

Codon usage measures reflect the probability that a sequence is coding. They are calculated 

using codon usage tables, which are available for many organisms. In SeqoolM, a codon 

usage table for humans is used by default after installation, however, tables for other species 

can be used as well (see below). For analysing codon usage or codon preference press the 

button  or select Statistics|Codon usage in the menu. A dialog box opens showing several 

options (Figure 26): First, select either codon usage or codon preference. Codon usage reflects 

the probability that a sequence is coding in a given reading frame. Codon preference takes only 
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uneven usage of synonymous codons into account (Gribskov et al. 1984). For calculations of 

codon usage and codon preference see chapter 3.3.2. Usually, codon usage or preference is 

calculated for all three reading frames, hence the option Calculate for frames should normally 

be activated. Select if the respective statistic is calculated for a moving “window” or for all 

sequence. If the a window is used, the statistic is calculated for subsequences of a given 

length, e.g. 50 codons (the “window”). After that, the window is moved to the right by a given 

amount, e.g. 1 codon, and the statistic is calculated again for the new window. This procedure 

is repeated until the window has slided over the whole range. When using a sliding window 

specify the width of the window and the amount the window is moved after each calculation. 

Optionally select the option Text output for more detailed information, e.g. for specific values for 

each position of the sequence. 

 

 

 

Figure 26. The dialog for calculating codon usage. 

 

The currently used codon usage table can be chosen by pressing the CU table button, which 

shows a new window containing the current codon usage table. This table lists the codons, the 

frequency of each codon (per 1000), the frequency relative to synonymous codons, and the 

number of synonymous codons. Other tables can be loaded by pressing Open (make sure to 

provide tables with an identical format!). A codon usage table can be used as default by 

pressing Set as default. The default codon usage file is always loaded at the start of the 

program. Alternatively, a codon usage table can be set as default in the Configure-dialog (see 

menu File|Configure|Settings …).  
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4.3.3. Calculation of oligonucleotide frequencies 

For calculating oligonucleotide frequencies press the button  or select Statistics|Oligo-

nucleotides in the menu. In the window which appears (Figure 27) select the length of the 

oligonucleotides for which frequencies shall be calculated and press OK. In some cases 

(especially for long oligonucleotides and datasets containing only few sequences) some 

oligonucleotides may not be found, i.e. their frequency in the sample is zero. However, in reality 

these oligonucleotides may in fact occur, though rarely. Oligonucleotides remain usually 

undetected when a sequence set contains too few sequences. Frequencies with a value of zero 

may cause problems when using them for later calculations, e.g. for a recognition model 

(provoking e.g. division by zero errors). To avoid this problem, frequencies equal to zero can be 

substituted by a fixed, user defined value (option For missing oligonucleotides use a frequency 

of…). For estimating the expected frequency of an oligonucleotide which was not observed in a 

dataset, it might help to consider the probability to observe the oligonucleotide by chance 

(assuming that each nucleotide occurs with the same frequency). For example, the expected 

frequency for a trinucleotide is 1/4³ = 1/64 = 0.0156. For a hexanucleotides the frequency of 

each hexanucleotide is 1/46 = 1/4096 = 0.000244 (evidently, in a dataset containing 4000 

oligonucleotides of length 6 nt it is impossible to find all 4096 hexanucleotides).  

 

Oligonucleotide frequencies can either be shown in the Text output page (when the option Text 

output is activated), or they can be saved to a separate file (option Save frequencies in a file). 

This option creates a Seqool frequency file (see Appendix 10.1). 

 

 

 

Figure 27. The dialog for the calculation of oligonucleotide frequencies. 
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4.4. Over- and under-represented words 

The frequency of short subsequences of only a few nucleotides, so called words, can be 

compared to the frequency which would be expected given a certain sequence composition. As 

a simple example consider trinucleotides (words with a length of 3 nt). In non-coding regions 

with an equal probability of each trinucleotide, a given trinucleotide is expected to occur with a 

frequency of 1/64. Trinucleotides occurring more frequently than 1/64 = 0.0156 are over-

represented, while others occurring more rarely are under-represented. Over- or under-

represented words (in this case the trinucleotides) may indicate e.g. regulatory sequences. 

 

 

 

Figure 29. The dialog for calculation of over- and under-represented words (short subsequences). 

 

4.4.1. Calculation of over-/under-represented words 

For determining over- or under-represented words press the button  or select Statistics|Find 

over- and under-represented words. The next dialog provides several options (Figure 29): First 

select the length of the words (short subsequences) which shall be analysed, e.g. select a 

length of 3 nt for analysing trinucleotides. Then specify how to calculate the expected word 

frequencies. In the simplest case, all words are expected to occur at random, each with an 

equal probability (option Assume an equal probability for each word, e.g. a probability of 1/64 is 

expected for trinucleotides). Alternatively, a nucleotide distribution can be calculated from the 

existing sequences, and the expected occurrence or words can be estimated from this 

distribution (option Calculate nucleotide frequencies from sequences). Since this method 

provides only a very approximate calculation the option Calculate word probabilities from 

reference set should be used preferentially. This method retrieves the expected probability for 

each word from a separate file, the reference set. Such a reference set contains, for example, a 
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distribution of trinucleotides in coding DNA or hexamer-frequencies in exons (e.g. for identifying 

over-represented words, i.e. putative regulatory elements, in exons). See below for a 

description of how to create reference set files. Further options are described later. 

 

After pressing the button OK, scores are calculated for all words and for all positions of the 

sequences. The frequency of each word at each position is shown in Figure 30. The respective 

image can be copied or by pressing the right mouse button above the image (follow the option 

in the appearing context menu). Specific words can be selected in the box Display freq. of 

word. The text output (in the Text output tab-sheet) provides additional information, such as the 

score of each word, the number of observed and expected hits, etc.. 

 

 

 

Figure 30. Graphical output of the calculation of over- or under-represented words.  

 

 

Additional options in the dialog shown in Figure 29 allow to sort or filter certain words. Usually 

words are sorted for their score (option Sort words for score), i.e. over-represented words (with 

a positive score) appear at the top of the output list and under-represented words appear at the 

end of that list. Alternatively, words can be sorted according to the number of sequences in 

which a word was found (option Sort words for sequence hits). Words can be filtered according 

to a certain score threshold (option Show only words with a min. score of) or to a minimum 

number of sequences in which they were found (option Show only words found in no. of seqs.). 

Finally the number of words can be limited to a given number (e.g. show only the ten words 

with the highest score; option Number of words to display). 

 

A few options allow to customize the graphical output and the text-output: Adjust scale 

automatically adjust the scale of the graphic output according to the observed frequencies. If 

this option is deactivated, the y-axis shows the full range from 0.0 to 1.0. The option Adjust 

scale for number of sequences at current position causes the graphic to display the frequencies 

of a word relative to the number of sequences in the dataset which cover the position where a 

word was found. This option is useful if a dataset contains sequences with varying lengths. For 
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example, consider a dataset contains three sequences of varying length, e.g. 40 nt, 60 nt and 

100 nt. If a given word is found at the 50th position in one of these three sequences then the 

absolute frequency would be 0.333. However, only two sequences provide information about 

the position 50, hence the relative frequency is 0.500 rather than 0.333. 

 

Further options include the option Display hits at each position, which allows to show the 

number of hits at each position of the sequences in the graphical output, and the option Text 

output, which allows to display a table containing the number of observed and expected hits for 

each word, the number of sequences in which a word was found, the score, and the number of 

hits at each position in the sequences in the Text output page. 

 

Creating reference set files 

Reference sets files are also created by calculation of over-/under-represented words: Press the button  

or select Statistics|Find over- and under-represented words. In the dialog which opens select the 

length of the word and choose the option Assume an equal probability for each word and press OK for 

starting the search. When the search is complete, press the button    at the top of the 

Graphics page to save the reference set (a short message will appear describing the use of a reference 

set). 

 

 

4.4.2. Clustering of over-/under-represented words 

Over- or under-represented words may include regulatory or otherwise biologically significant 

signals (e.g. the binding site of a protein). The composition of such elements may be very 

variable, though some similarities are usually shared between the different sequences 

corresponding to the signal. The clustering of over-represented sequences provides a method 

for identifying groups of similar sequences which may correspond to a biological signal. These 

groups (clusters) of similar sequences can be used for building a recognition model for a signal, 

e.g. a profiles or weight matrices (see chapter 5.1). The applied clustering algorithm is based 

on sequences identity as a measure of genetic distance. Clusters are produced using a 

neighbour joining algorithm. 

 

Identification of over-represented words 

As an example, a dataset containing the terminal 70 nt of human introns will be used. For these 

sequences, over-represented words of length 6nt, i.e. hexamers, are identified assuming an 

equal probability for each word. The calculation of over-represented words shows that the 

hexamer TTTTTT is the most frequent word, followed by many more pyrimidine-rich words (as 

might have been expected from the composition of the polypyrimidine tract which is situated at 
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the end of introns). A graph showing the distribution of the hexamer TTTTTT shows a marked 

concentration at the end of introns, the position of the polypyrimine tract (Figure 31). In this 

example, however, the polypyrimidine tract is not considered. Instead another hexamer will be 

analysed: CTGACC. This word shows a high concentration just before the location of the 

polypyrimidine tract. It closely resembles the branch site (YTNAY, with Y being either C or T, N 

being any nucleotide). In the following it will be demonstrated, using the branch site as an 

example, how the clustering of over-represented words is applied to construct clusters of 

similar sequences and how weight matrices are produced from these clusters. 

 

 

 

Figure 31. Occurrence of the hexamer TTTTTT at the end of human introns (top) and of the hexamer 

CTGACC (bottom), which resembles the branch point. 

 

 

Analysis of the region in which most over-represent ed words are found 

The previous analysis showed that the region where most CTGACC hexamers were found 

contains also many words which correspond to the polypyrimidine tract. In order to exclude 

high scoring words which represent the polypyrimidine tract, words will be calculated only for a 

very narrow range between –35 nt and –15 nt (range 35 to 55 in Figure 31) upstream of the 

acceptor splice site. The word CTGACC was most frequently observed in this region. After 

calculating over- and under-represented hexamers for this region (this analysis is shown in 

detail here, for details about the calculation of over-represented words refer to the previous 

chapter), words are clustered by pressing the button  or selecting Statistics|Cluster over-

/under-represented words in the menu. The following dialog (Figure 32) offers several options: 

The Number of words to cluster allows to limit the clustering to the top ranking words only 

(according to the word list created for the calculation of over- and under represented words). In 

this example clustering will be conducted for the top 500 words, i.e. the 500 highest-scoring 
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words. The branch limit determines at which “distance” (here: sequence similarity), words are 

clustered into one cluster. A low branch limit will cluster only very similar words, while a large 

branch limit will create clusters with less similar words. For a first analysis a low branch limit 

should be used, which may be increased until the clusters show a reasonable composition. In 

this example a branch limit of 0.075 will be used. As mentioned before, the branch limit refers 

to the “distance” or similarity between words. Usually sequence identity will be used. This 

means that the “distance” refers to the fraction of nucleotides in a word which are not identical 

(other distances are also provided, but sequence identity will give appropriate results in most 

cases). 

 

Detailed information about the neighbour joining tree on which the clustering is based can be 

displayed optionally (option: Display tree information), and a matrix of the distances between all 

pairs of words can be shown (option: Display distance matrix). Usually many clusters are 

formed during an analysis, therefore it is advisable to filter only the “best” clusters, e.g. those 

including the highest number of words (option: Display clusters containing min. word number 

of), those with a minimum cumulative score (i.e. the sum of the scores of all words; option: 

Display clusters with a min. cumulative score of), or clusters with a given minimum number of 

cumulative sequence hits (i.e. the sum of the sequence hits of each word; option: Display 

clusters with min. cum. sequence hits of). In this example, only clusters with a minimum 

cumulative number of 3000 sequence hits shall be displayed. Finally, the words are clustered 

by pressing OK. 

 

 

 

Figure 32. The dialog for clustering over- or under-represented words (short subsequences) for the 

calculation of consensus trees for putative signals. 
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Clusters and weight matrices 

The output of this analysis indicates a total number of 77 clusters (Figure 33). Of these, only 6 

clusters show at least 3000 cumulative sequence hits (i.e. the sum of the sequence hits of all 

words exceed 3000; however, the real number of hits of a cluster may be smaller than this 

number, because two words of one and the same cluster may be found in one and the same 

sequence).  

 

 
Branch lengths of UPGMA tree of over-represented wo rds: 
 
Min. branch length: 0,0000 
Max. branch length: 0,1667 
Mean branch length: 0,0339 
  
77 clusters found. Displaying clusters containing w ords found in at least 3000 sequences: 
 

Figure 33. General information displayed for the clustering of over-/under-represented words. 

 

 

Two of these 6 clusters two are displayed in Figure 34. These clusters resemble the human 

branch site YTNA. The words of both clusters are found in more than 3000 of all 10000 

sequences, with a cumulative score of 13.1 and 16.1 respectively (Figure 34). For each cluster 

a simple weight matrix and a consensus sequence is displayed. The most conserved positions 

are marked with asterisks (****). Since the given weight matrices are based only on the words 

included in the clusters, the terminal positions of the matrices are represented only by very few 

words. For example, in cluster 5 the position 8 is only covered by 4 words, each showing 

another nucleotide. Consequently, the nucleotide frequencies at this position is 0.25 for each 

nucleotide. Evidently, 4 words represent a very small sample size. More accurate weight 

matrices can be calculated using the option Display all hits for each cluster (see Figure 32), 

which was not mentioned previously. When this option is activated hits are searched for each 

word in the cluster within the whole dataset. The resulting list of hits can be used as an 

alignment file for building a profile or weight matrix model (see chapter 5.1, copy all hits in a 

separate file and use this file as an alignment file for building the model).  

 

Profiles for all six clusters observed in this example are shown in Figure 35. Four of these 

clusters seem to relate to the polypyrimidine tract since they show a high fraction of the 

nucleotides C and T (clusters 1, 3, 4 and 6). But the other two clusters, especially cluster 5, 

show a high similarity to the branch site YTNA. A profile for both combined clusters is displayed 

in Figure 36, as well as a profile of the human branch site from Senapathy et al. (1990) for 

comparison. 
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Cluster 2 (30 words): 
--ttataa- 
--aaataa- 
---aataat 
---aataaa 
--taataa- 
--taatgt- 
-ttaatg-- 
-ctaatg-- 
tctaat--- 
--taatga- 
-ataata-- 
-ttaata-- 
--taatat- 
-taaatt-- 
-taaata-- 
ataaat--- 
--taattg- 
--taattt- 
-ataatt-- 
-ttaatt-- 
... 
...  
 
Cumulative score: 13,118; cumulative sequence hits: 3205 
 
Profile of cluster 2: 
Pos 1  2  3  4  5  6  7  8  9 
a  0,57 0,17 0,22 0,77 0,97 0,00 0,48 0,67 0,67 
c  0,14 0,11 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
g  0,00 0,00 0,00 0,00 0,00 0,00 0,17 0,08 0,00 
t  0,29 0,72 0,78 0,23 0,03 1,00 0,35 0,25 0,33 
                 **** **** ****                 
Cons: h  h  w  w  w  t  d  d  w 
 
 
Cluster 5 (29 words): 
-agtgac-- 
--gtgact- 
-tgtgac-- 
---tgacca 
--gtgacc- 
---tgactg 
-actgag-- 
---tgacct 
-actgac-- 
--ctgacc- 
-cctgac-- 
---tgaccc 
-tctgac-- 
-gctgac-- 
--ctgact- 
tgctga--- 
--ctgaca- 
tcctga--- 
--ctgatt- 
--ctgatg- 
ggctga--- 
... 
...  
 
Cumulative score: 16,151; cumulative sequence hits: 4373 
  
Profile of cluster 5: 
Pos 1  2  3  4  5  6  7  8  9 
a  0,17 0,20 0,00 0,00 0,00 1,00 0,00 0,07 0,25 
c  0,17 0,33 0,84 0,00 0,00 0,00 0,65 0,43 0,25 
g  0,33 0,27 0,16 0,00 1,00 0,00 0,26 0,14 0,25 
t  0,33 0,20 0,00 1,00 0,00 0,00 0,09 0,36 0,25 
                 **** **** ****                 
Cons: n  n  s  t  g  a  b  n  n 
  

Figure 34. Two clusters which may represent the branch site YTNA upstream of human acceptor splice 

sites. Only the first words of the clusters are displayed here for demonstration. 
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Figure 35. Profiles for six clusters of over-represented words. 

 

 

 

 

Figure 36. Profiles of the human branch site (left, according to Senapathy et al. 1990) and a calculated 

from the combined clusters 2 and 5. 
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4.5. Searching for patterns 

4.5.1. Text search  

Text search provides a simple way to search for patterns. In Seqool and SeqoolM text search 

is facilitated by the use of IUPAC nucleic acid codes, such as ‘y’ for pyrimidines, or ‘s’ for strong 

bases (G or C). For example searching for the string ‘yyyy’ provides an easy way to identify 

most polypyrimidines. 

 

4.5.1.1 Basic text search 

Open the text search dialog by pressing the button   or by selecting Search|Text search in 

the menu. The text search dialog which opens is displayed in Figure 37. The easiest way to 

search for a string is to enter the search string in the left column of the table (column Search 

sequence; the column Description is only informative when searching with types). If IUPAC 

codes for nucleic acids are used, make sure to activate the option Use IUPAC nucleic acid 

codes. A list of IUPAC nucleic acid codes can be displayed by pressing the blue arrows next to 

the check box. Finally press Search. Subsequently hits are displayed in the Graphics page of 

the program (Figure 38).  

 

 

 

Figure 37. The text search dialog in SeqoolM. 
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Figure 38. Hits are displayed in the hits graph. 

 

 

Options 

A few options allow to customize the output:  

 

Adjust scale automatically  - Adjusts the scale of the graphic output automatically. If this  

  option is deactivated, the y-axis shows the range from 0.0  

  to 1.0, otherwise the output is adjusted according to the  

  highest frequency observed.  

 

Adjust scale for number of  - Displays the frequencies of a word relative to the number  

sequences at current position    of sequences in the dataset which cover the position where  

  a word was found. This option is useful if a dataset  

  contains sequences with varying lengths. For example,    

  consider a dataset containing three sequences of varying  

  lengths, e.g. 40 nt, 60 nt and 100 nt. If a given word is  

  found at the 50th position in one of the three sequences the  

  absolute frequency would be 0.333. However, only two   

  sequences actually covered the position 50, hence the  

  relative frequency is in fact 0.500.   

 

Display hits at each position  - Shows the number of hits at each position of the  

  sequences in the graphical output.    

 

Text output  - Shows a table containing the number of observed and  

  expected hits for each word, the number of sequences in  

  which a word was found, the score, and the number of hits  

  at each position in the sequences.  
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Alternatively to the text search described above, a more rapid text search can be performed by 

entering a given search text in the box Quick text search, which is located at the top of the 

Graphics tab sheet (see Figure 38). The quick text search uses the same options currently 

selected in the Text search dialog (adjustment of scales, etc.). 

 

4.5.1.2 Types – Frequently used / alternative search-patterns 

SeqoolM offers the possibility to create types for searching. A type is intended for frequently 

used search patterns and it may include more than one search text. For example, the type 

‘Stop codon’ allows to search for all three stop codons by including all three stop codons as 

alternative search patterns. For a detailed description of types and their use for text search 

refer to the respective section in the description of the program Seqool (chapter 3.4.1.3). 
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4.5.2. Searching with pattern recognition models 

4.5.2.1 Introduction 

The Seqool program package provides separate modules for creating a variety of pattern 

search models and models, e.g. position specific score matrices (weight matrices), profile 

hidden Markov models, and others, and more advanced models for combining basic models, 

such as decision trees or neural networks. Modules for building such models can be started by 

selecting the respective component in the Tools menu or using the respective tool buttons 

(Figure 39). All these models can be used for searching in Seqool and SeqoolM. 

 

 

Figure 39. Tool buttons for starting program components for signal-recognition models. 

 

4.5.2.2 Basic model search 

Pressing the button (or selecting Search|Model search in the menu) opens the model 

search dialog (Figure 40). When searching with a specific model, only models contained in the 

default model directory are listed. This default directory can be changed permanently in the 

main menu (menu File|Configure) or only temporally (until exiting the program) by pressing the 

“Model directory” button (if a new model was saved in the model directory while the model 

search dialog was still open, the list of models can also be actualised by pressing ). 

 

For selecting a model, choose one of the models listed in the Select model box and press the 

button Add model. Additional information about the model is displayed below the Select model 

box, such as the model type, the models name, the description, and the file name (see Figure 

40). Press Search for starting the model search. An example of the graphical and the text 

output, respectively, is shown in Figure 41 and in Figure 42.  
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Figure 40. The model search dialog in SeqoolM. 

 

 

 

Figure 41. Example of search results for the model search. 

 

 
Searching with PSMM/WMM: Branch Site, human (Wheigh t Martix from Senapathy et al. 1990) 

 
Threshold: 3,0000 

 
Seq. Pos. Score   Hit 
1  48  3,300   aggccccaatatgat 
2  39  6,981   aaagactgatcccca 
3  38  7,048   tgtgcctgacagctg 
...    

...    

9999 47  5,667   tgtgtctcacttaga 
10000 47  3,300   gaggcccaatatgca 
10000 61  3,921   acctgttcatctgca 

 
Mean hits per sequence: 1,92 
Overall hits:    19170 
Sequences:     10000 

 
Hits at each position: 
Pos.: 1  2  3  4  5  6  7  8  9  10  11  12  13  .. .  
Hits: 224 224 230 217 264 194 199 211 233 210 233 2 16 217 ... 

 

Figure 42. Example of a text output for model search (options: Print all scores above threshold and 

Display hit string were activated). 
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Options 

Several options allow to customize the graphical and the text output. A number of these options 

allow to refine or filter certain hits according to their score or their position. Furthermore, the 

sequence of all matches can be listed in the text output and may subsequently be used for a 

refinement of a model.  

 

Adjust scale automatically  - Adjusts the scale of the graphic output automatically. If this  

  option is deactivated, the y-axis shows the range from 0.0  

  to 1.0, otherwise the output is adjusted according to the  

  highest frequency observed.  

 

Adjust scale for number of  - Displays the frequencies of a word relative to the number  

sequences at current position    of sequences in the dataset which cover the position where  

  a word was found. This option is useful if a dataset  

  contains sequences with varying lengths. For example,    

  consider a dataset containing three sequences of varying  

  lengths, e.g. 40 nt, 60 nt and 100 nt. If a given word is  

  found at the 50th position in one of the three sequences the  

  absolute frequency would be 0.333. However, only two   

  sequences actually covered the position 50, hence the  

  relative frequency is in fact 0.500.   

 

Display hits at each position  - Shows the number of hits at each position of the  

  sequences in the graphical output.    

 

Text output  - Shows a tables with various information, depending on the  

  options and filters selected. E.g. Scores and positions of  

  the highest scoring hit for each sequence, all scores for  

  each position of a sequence, etc. Several options are  

  available for text output: 

  Print all scores above threshold: Displays the scores of  

  each hit with a score that is higher than the score threshold  

  of the model. For each hit the hit sequence can be  

  displayed, including neighbouring sequences (option:  

  Display hit string) 

  Print all scores: Displays the scores of each and every  

  position within each sequence, irrespective of the score  

  threshold of the model. 

  Print number of hits with scores above threshold: Shows  

  the number of hits for each sequence which are above the  

  score threshold of the model.  
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Range          - Allows to search only within a given range, e.g. between  

  the position 100 and 150 nt. Selecting 0 in the “End” box  

  searches until to the end of each sequence. 

 

Search for best hit only     - Only the hit with the highest score is reported for each  

  sequence. 

 

Search only closest hit to position  - Only the hit (with a score above the score threshold of the  

  model) which is closest to a given position is reported. 
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4.6. Customizing SeqoolM 

4.6.1. Configuring SeqoolM 

Basic settings can be customized using the menu option File|Configure… . All options listed in 

the configure window (Figure 43) are permanent, i.e. the respective settings are loaded by 

default when the program starts. The default type file refers to the file containing all types which 

can be used for text search (see chapter 4.5.1.2). The Codon usage file defines which codon 

usage table is used for the calculation of codon usage of codon preference. The Model 

directory determines which folder contains the pattern recognition model which are available for 

searching in SeqoolM (when using a model comprising several submodels remember that also 

all sub-models must be located in the same folder as the main model). Finally, it can be 

selected how many recently opened files are displayed in the file menu.  

 

 

 

Figure 43. The dialog for customizing basic settings of SeqoolM. 

 

4.6.2. Program priority 

Since calculations may be time intensive for large sequence datasets, SeqoolM may occupy 

most computer resources (processor time). This may impede other applications to run 

smoothly. Therefore, the program priority of SeqoolM can be adjusted using the menu option 

File|Configure…|Program priority. Five settings can be selected. The highest priority setting 

(highest) may considerably slow down even the operating system, causing even mouse 

movements to be delayed. The two lowest priority levels (low and idle) allow other programs to 

run smoothly while calculations in SeqoolM will take more time than usually. 
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Figure 44. Program priority settings in SeqoolM. 
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5. Building pattern recognition models 
 

5.1. Profiles (WMM, PSSM) 

Module Profile  

5.1.1. Introduction 

A simple way to identify signals in nucleotide sequences is to observe nucleotide frequencies at 

each position of signals and calculate probabilities for their occurrence. Profiles (or weight 

matrices models, WMM) show the probability of observing a nucleotide at a given position 

(Table 1). A graphical representation of this weight matrix is shown in Figure 46. 

 
 

  Position:  -10     -9     -8     -7     -6     -5      -4     -3     -2     -1     +1     +2 

  A        0,092  0,093  0,111  0,109  0,086  0,089   0,219  0,057  0,908  0,055  0,249  0,230 

  C        0,352  0,347  0,372  0,404  0,430  0,374   0,320  0,672  0,019  0,019  0,153  0,216 

  G        0,129  0,138  0,134  0,104  0,078  0,081   0,232  0,023  0,055  0,907  0,483  0,223 

  T        0,427  0,423  0,384  0,383  0,406  0,456   0,230  0,248  0,019  0,018  0,115  0,331 

Table 1. Probabilities of observing a nucleotide at a given position around the human acceptor splice 

site, obtained from 5000 constitutive spice sites extracted from the Altextron database (Clark and 

Thanaraj 2002). 
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Figure 44. Graphical illustration of the weight matrix shown in Table 1. 

 

Weight matrices can be used for searching for example for putative acceptor splice sites in 

unknown sequences by calculating the probability (more specifically the so-called log-odds 

score) of a subsequence to correspond to a splice site. Usually, a threshold is applied to 

distinguish putative signals from random or “false” signals. This threshold is determined 
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experimentally by comparing the distributions of scores obtained from the model for real splice 

sites and false splice sites (Figure 46). 

 

 
Figure 46. Score distribution of real human acceptor splice sites (red) and “false” acceptor splice sites 

(blue, subsequences containing ‘AG’ but not being real splice sites), obtained from a simple weight 

matrix model (profile). 

 

 

Similar to weight matrix models are position-specific score matrices (PSSM). Position-specific 

score matrices differ from weight matrices only in the fact that nucleotide probabilities are 

transformed to log-odds scores. A PSSM of the preceding weight matrix model is given in Table 

2. 

 
  Position: –10     –9     –8     –7     –6     –5     –4     –3     –2     –1     +1     +2 

  A       -3,44  -3,43  -3,17  -3,20  -3,54  -3,49  -2,19  -4,14  -0,14  -4,18  -2,01  -2,12 

  C       -1,51  -1,53  -1,43  -1,31  -1,22  -1,42  -1,65  -0,57  -5,75  -5,69  -2,70  -2,21 

  G       -2,95  -2,86  -2,90  -3,26  -3,68  -3,62  -2,11  -5,43  -4,19  -0,14  -1,05  -2,16 

  T       -1,23  -1,24  -1,38  -1,38  -1,30  -1,13  -2,12  -2,01  -5,71  -5,78  -3,13  -1,60 

Table 2. A position-specific score matrix (PSSM) of the human acceptor splice site. 

 

5.1.2. Increased performance using information cont ent 

A modification introduced by Schneider (Schneider et al. 1986) applies information theory for 

searching signals. Information content is calculated for each nucleotide and each position, 

reflecting how much information of a signal is due to the occurrence of a specific nucleotide 

(see Schneider et al. 1986 and Schneider 1997). A model of the human acceptor splice site 

and using information content is shown in Figure 46. The size of nucleotide letters indicate the 

amount information content. Negative values are displayed by upside-down letters. 
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(Upsidedown letters indicate negative scores)  

Figure 46. A model of the human acceptor splice site using information content (drawn using the module 

Profile). 

 

5.1.3. Adding pseudocounts 

If a profile is based on a small amount of sequences, it is probable that the obtained nucleotide 

frequencies are only very approximate. Consequently, searching with the corresponding model 

might not identify all real signals reliably. The recognition can be improved by adding 

pseudocounts to the obtained nucleotide frequencies. A number of different methods for the 

calculation of pseudocounts are proposed in the literature (see e.g. Durbin et al. 1998). In 

Seqool, pseudocounts are derived from PAM substitution matrices and can be adjusted using 

a pseudocount weight (as described in Durbin et al. 1998). 

 

5.1.4. Higher order models 

Profiles (or PSSMs) can also be calculated using di- or trinucleotide counts for each position. 

Notably, this procedure does not correspond to a Markov chain of order two or three, 

respectively. The inclusion of di- or trinucleotides might be useful when the nucleotide 

probabilities at neighbouring positions are mutually dependent.  
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5.1.5. Building a WMM/PSSM 

 

Start the application: Profile 

1. Select a Name for your model. Optionally add a short description. 

2. Select an Alignment file containing a set of aligned sequences containing your signal. 

3. Select a file containing Background frequencies (used for the calculation of pseudocounts). This 
file contains the expected nucleotide frequencies of the region where your signal is present. 
Frequency files can be created using SeqoolM (Menu-item: Statistics|Oligonucleotides). 

4. Select if you want to calculate a conventional PSSM using Log-odd scores or Information 
content. 

5. Select if you want to use nucleotide (order 1), dinucleotide (order 2) or trinucleotide counts (order 
3) for you model. Usually, nucleotide counts do well. 

6. If you want to calculate a PSSM using di- or trinucleotide counts and you do not have the 
respective background-frequency-file available (i.e. the “*.fre” file for di- or trinucleotides), you 
might select the option Estimate di-/tri-nucleotide frequencies from nt frequencies. In this case 
only a nucleotide frequency file is needed as background-frequency-file, and di- or trinucleotide 
frequencies are roughly estimated based on that file. However, it is recommended always to use 
a background frequency file. 

7. If you have chosen to build a model calculating log-odds scores, select the Weight of 
pseudocounts. Models with small weights might not identify some real signals, while large 
weights will lead to unspecific models. 

8. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a 
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.  

9. Select a Colour for the graphical representation of hits of this model in Seqool. 

10. Press the Build button. 

 

 

Evaluate the model using the following options: 

 

Show parameters  Display model parameters 

Draw sequence logo Create a graphical representation of the model 

Score sequences Score a set of sequences. Use this option to reveal the best score threshold by 
comparing score distributions of real signals and false signals (or random 
sequences) and for testing a model. Note that the sequences should have the 
same length as those of the alignment file used for training the model. For 
longer sequences additional nucleotides are ignored. The dialog offers some 
additional options, such as the saving of sequences above a score threshold.  
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5.2. Maximum Dependence Decomposition (MDD) 

Module MDD 

5.2.1. Introduction 

In several cases, nucleotide positions are mutually dependent, i.e. the probabilities of observing 

a nucleotide at one positions depends strongly on the nucleotides which are observed at other, 

even quite distant positions. Burge and Karlin (1997) developed maximum dependence 

decomposition (MDD) for the recognition of donor splice sites. MDD divides a set of signals into 

several subsets of more similar signals, and subsequently builds a weight matrix (WMM/PSSM) 

for each subset. This is done by repetition of the following steps:  

 

First, the position is determined which (on average) correlates most with any other position in 

the signal (determined by a number of χ²-tests). Second, the set of analysed sequences is 

subdivided into those sequences containing the most frequent nucleotide of that position and 

those not containing it. Then, the preceding two steps are repeated for each subset.  

 

The whole procedure is repeated until a minimum number of sequences is obtained in a 

subset. Finally, for each subset one weight matrix (WMM/PSSM) is built. When searching with 

an MDD model, a putative signal is first analysed regarding the nucleotides observed at the 

most significant positions, and then it is scored by the corresponding sub-model. 

 

5.2.2. Example 

The construction of an MDD model is demonstrated for a set of 5000 human donor splice sites 

(Table 3). First, a weight matrix is calculated from all sequences. Then, a consensus sequence 

is constructed from this weight matrix given a threshold of 30 percent. This means that all those 

bases are assigned to a letter in the consensus sequence which show a minimum frequency of 

30 percent (0.3). The respective consensus in this example is [a/c]AGGT[a/g]AGTG  (see 

Table 3). In the next step, all sequences are analysed at each position of the consensus 

sequence in order to reveal dependencies. This is done by many pairwise chi-square tests. The 

chi-square values indicate the level dependence between two positions. For example, position 

+3 shows the highest dependence with position +5, with the respective chi-square value being 

412.7. The next highest dependence of position +3 is with position +4, with a chi-square of 

230.9. To get an estimate which position shows the highest overall dependence, the single chi-

square values are summed up for each position. In the example it becomes clear then, that 

position +5 shows the overall highest dependence (this position shows the highest sum of all 
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chi-squares: 1846.6). This means, that the overall composition of the donor site depends 

strongly on which base is present at that position.  

 

After having identified the most significant position within the donor splice site, the set of splice 

sites are subdivided: Since the most frequent letter at position +5 is a G, the set of splice sites 

is split into two subsets, one containing those sequences which have a G at position +5, and 

another one with those sequences which have not. This is the first decomposition step. The 

resulting weight matrices for both subsets are shown in 2.a) and 2.b) of Table 3. Again, weight 

matrices are calculated for each subset separately, and the position with the highest 

dependence is identified by chi-square tests.  

 

The complete MDD model construction in this example results in 8 different weight matrices. 

Figure 47 shows the score distributions for real acceptor splice sites and false splice sites 

(sequences containing AG, but not being real splice sites). 

 

 

Figure 47. Score distributions of 1000 constitutive human acceptor splice sites (red) and 1000 false 

splice sites (blue, sequences containing AG, but not being real splice sites). The overall recognition is 

about 91 percent. 

 

Note:  When using a set of splice sites for building this model, make sure to use only canonical splice 

sites! If a set of donor splice sites contains e.g. few non-canonical splice sites, then the most significant 

positions determined by MDD will be the G and the T at the splice site core. The set will then be divided 

into two subsets, one of the sequences containing these bases (the canonical splice sites, i.e. almost all 

sequences) and a very small subset with sequences not containing these bases at the splice site core 

(the non-canonical splice sites). The latter set is likely to contain less sequences than the minimum 

number given by the subdivision threshold (e.g. a minimum of 200 sequences). Consequently MDD 

stops without subdividing anything! 



Maximum Dependence Decomposition (MDD)  Building pattern recognition models 

  49 

1. Construction of a weight matrix from all sequenc es and analysis which positions show the strongest mutual dependence:   
 
Weight matrix of all sequences 
  
Pos   -15  -14  -13  -12  -11  -10  -9   -8   -7   -6   -5   -4   -3   -2   -1   1    2    3    4    5     6    7    8    9    10 
A     0,27 0,28 0,25 0,27 0,29 0,26 0,28 0,28 0,26 0,28 0,28 0,29 0,33 0,63 0,10 0,00 0,00 0,56 0,70 0 ,08 0,17 0,28 0,21 0,20 0,21 
C     0,27 0,26 0,28 0,27 0,26 0,26 0,25 0,24 0,26 0,25 0,25 0,28 0,37 0,12 0,03 0,00 0,00 0,03 0,08 0 ,06 0,16 0,20 0,26 0,28 0,24 
G     0,26 0,23 0,26 0,25 0,23 0,26 0,26 0,23 0,25 0,24 0,21 0,22 0,18 0,12 0,79 1,00 0,00 0,38 0,11 0 ,80 0,20 0,32 0,25 0,25 0,27 
T     0,21 0,23 0,21 0,21 0,23 0,22 0,22 0,25 0,23 0,24 0,25 0,21 0,12 0,13 0,07 0,00 1,00 0,02 0,11 0 ,06 0,47 0,21 0,28 0,27 0,29 
Cons  -    -    -    -    -    -    -    -    -    -    -    -    a/c  A    G    G    T    a/g  A    G     T    G    -    -    -  
 
Chi-square values for all pairs of positions: 
 
Pos  -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 Sum  
-15  - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-14  0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-13  0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-12  0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-11  0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-10  0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 

-9  0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-8  0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-7  0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-6  0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-5  0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-4  0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-3 ac 0.3 2.5 5 2.5 4.5 3.7 1.5 11 2.5 6.1 28.1 162.7 - 141.3 27.9 0 0 14.2 45.7 64 39.3 8.5 3.6 4.3 3 582.3 
-2 A 6.4 14 1.5 1 36.1 2.5 7.9 20.6 10.7 3.1 28.1 13.5 417.1 - 197.3 0 0 92.5 209.5 294.3 181.3 41 2.9 25 7.9 1614.4 
-1 G 2.1 12.4 26.1 2.5 2.6 24.1 5.6 0.8 11.4 7.6 1.5 29.2 42.7 384.5 - 0 0 51.3 175.8 228.9 548.1 43.8 31.7 28.1 18.2 1679 
1 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0.1 
2 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0.1 
3 ag 6.9 2.2 1.4 0.3 2.8 7.8 7.9 1.4 5.7 1.4 8.2 1.8 20.4 63.7 50.6 0 0 - 35.6 20.2 18.2 6.7 5.3 3.6 4.4 276.5 
4 A 3.9 2.7 4.7 3.4 5 13.6 8 0.4 13.7 9.6 10.2 1.5 54.9 209.8 170.9 0 0 230.9 - 157.9 8.8 19.5 2.7 2.1 2.3 936.5 
5 G 9.1 4.4 3.5 0.9 10 4 14 7.1 15.6 4.9 29.3 11.4 65.8 296.7 227.9 0 0 412.7 433.4 - 130.3 99.3 18 24.8 23.4 1846.6 
6 T 4 3.9 18.6 6.6 2 13.4 0.3 5.2 15.6 5.5 1 8.1 47.1 184.4 539.6 0 0 46.7 20.2 122.6 - 131.5 43.7 11.2 29.8 1261.2 
7 G 23 9.3 32.6 5.3 9.8 10.3 9.3 16.1 10.7 6.1 28.8 20.9 14.1 17.7 0.8 0 0 83.9 31.3 42.6 160.5 - 71.5 54.3 26.7 685.6 
8  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0.1 
9  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0.1 

10  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0.1 
 

Table 3. Maximum dependence decomposition (human donor sites, -15..+10 nt): 
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2. Construction of weight matrices for all those se quences containing or not containing G at position +5:   
 
a) Decomposition of those sequences containing G at  position +5 
 
Weight matrix of the sequences containing  G at position +5 
 
Pos   -15  -14  -13  -12  -11  -10  -9   -8   -7   -6   -5   -4   -3   -2   -1   1    2    3    4    5     6    7    8    9    10 
A     0.26 0.28 0.24 0.26 0.28 0.25 0.27 0.28 0.25 0.27 0.27 0.29 0.32 0.57 0.12 0.00 0.00 0.49 0.74 0 .00 0.16 0.29 0.20 0.19 0.20 
C     0.28 0.27 0.28 0.27 0.26 0.26 0.26 0.25 0.27 0.24 0.26 0.28 0.36 0.14 0.04 0.00 0.00 0.04 0.04 0 .00 0.16 0.20 0.26 0.29 0.25 
G     0.26 0.23 0.27 0.26 0.23 0.26 0.26 0.24 0.26 0.24 0.22 0.22 0.19 0.14 0.75 1.00 0.00 0.45 0.12 1 .00 0.18 0.33 0.26 0.26 0.28 
T     0.20 0.22 0.21 0.21 0.22 0.22 0.21 0.24 0.23 0.24 0.25 0.21 0.13 0.15 0.09 0.00 1.00 0.03 0.10 0 .00 0.50 0.18 0.27 0.26 0.27 
Cons  -    -    -    -    -    -    -    -    -    -    -    -    ac   A    G    G    T    ag   A    G     T    G    -    -    -  
 
Chi-square values for all pairs of positions: 
 
Pos  -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 Sum  
-15  - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-14  0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-13  0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-12  0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-11  0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-10  0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 

-9  0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-8  0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-7  0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-6  0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-5  0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-4  0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-3 ac 0.2 3.4 2.8 1.5 4.5 5.1 2.5 7.9 1.8 4.6 26.1 131.8 - 101 13.8 0 0 13.3 22.2 0 30 8 1.6 3.4 2.3 388 
-2 A 4.3 13.3 3.6 1.9 32 4.3 5.2 15.6 10.3 3 13.1 11.2 319.5 - 94 0 0 87.6 171.7 0 138.3 25.3 3.1 18.5 5.3 981.2 
-1 G 1.2 10.6 31.9 2.6 3.6 29.3 2.3 0.1 20.9 6.7 1.4 36.3 25.7 260.3 - 0 0 87.1 144.6 0 491.8 38.1 40.2 30.8 24 1289.4 
1 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0.1 
2 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0.1 
3 ag 5.3 3 0.1 0.6 4.2 6.4 10.8 2.5 7.7 0.7 8.1 1.6 22.2 85 63.3 0 0 - 32 0 13.9 4.7 8.7 4.3 3.4 288.2 
4 A 5.5 2.9 3.3 1.8 3.9 12.7 6.5 0.4 8.5 5.5 8.3 0.6 34 159.5 140.8 0 0 186.2 - 0 0.4 5.3 4.9 1 3.2 595.5 
5 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0.1 
6 T 1.5 5 25.8 7 1.5 14.7 0.3 2.3 17.2 2.5 4.2 11.6 36.6 146.1 487 0 0 23.3 1.6 0 - 107.2 42.7 14 33.1 985.1 
7 G 11.3 7.9 23.9 3.1 12.2 3.7 8.4 12 4.6 2.7 28.7 14.2 12.5 8.2 0.4 0 0 54.5 17.6 0 117 - 42.3 39.1 15.2 439.2 
8  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0.1 
9  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0.1 

10  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0.1 
 

Table 3. Continued. 
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b). Decomposition of those sequence not containing  G at position +5: 
 
Weight matrix of the sequences not containing  G at position +5 
 
Pos   -15  -14  -13  -12  -11  -10  -9   -8   -7   -6   -5   -4   -3   -2   -1   1    2    3    4    5     6    7    8    9    10 
A     0.29 0.30 0.27 0.27 0.31 0.28 0.29 0.27 0.30 0.30 0.32 0.32 0.37 0.86 0.02 0.00 0.00 0.84 0.55 0 .39 0.23 0.24 0.25 0.24 0.23 
C     0.25 0.24 0.28 0.27 0.25 0.25 0.24 0.23 0.24 0.26 0.22 0.25 0.42 0.04 0.00 0.00 0.00 0.01 0.22 0 .29 0.18 0.19 0.25 0.24 0.21 
G     0.24 0.22 0.25 0.24 0.19 0.25 0.22 0.22 0.22 0.22 0.17 0.20 0.15 0.04 0.96 1.00 0.00 0.13 0.08 0 .00 0.28 0.25 0.21 0.22 0.23 
T     0.22 0.24 0.20 0.22 0.25 0.22 0.25 0.28 0.24 0.22 0.29 0.23 0.06 0.06 0.01 0.00 1.00 0.02 0.15 0 .32 0.31 0.32 0.29 0.31 0.33 
Cons  -    -    -    -    A    -    -    -    -    A    A    A    a/c  A    G    G    T    A    A    a /t  T    T    -    T    T 
 
Chi-square values for all pairs of positions: 
 
Pos  -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 Sum  
-15  - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-14  0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-13  0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-12  0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-11 A 1.5 2.8 7.4 55.9 - 14.4 1.8 16.3 0.4 2.8 8.7 8.4 5.8 4.8 8.8 0 0 6.2 1.1 8.7 0.4 1.8 2.1 5.8 1 166.7 
-10  0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 

-9  0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-8  0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-7  0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 
-6 A 2 7.6 3.9 6 2.7 0.8 5.5 4 18 - 17.1 1.7 0.1 4.9 0.2 0 0 1.5 0.8 2.8 1.4 0.8 1.8 3.7 0.1 87.6 
-5 A 0.6 3.3 11.3 2.1 5.2 4.1 2 1.4 0.9 24.8 - 1.2 2.2 6.6 5.9 0 0 5 3.4 3.3 0.7 1.5 6.5 0.7 2.1 94.7 
-4 A 0.8 2.1 7.6 4.1 3.3 1.7 4 1.2 8.7 10.2 12.7 - 17.4 7.1 8.8 0 0 1.5 6.9 2.3 1.6 8.1 5 2.1 9.4 126.5 
-3 ac 0.8 0.7 3.9 8.3 0.5 2 0.9 8.4 0.5 3.1 5.5 45.6 - 7.9 4.3 0 0 7.1 11.5 7.6 3.6 3.2 3.2 0.5 3 131.9 
-2 A 6.5 4.1 6.1 1.1 3.7 3.9 0.8 3.6 2.9 2.8 12.5 7.9 53.9 - 59.6 0 0 4.4 2.6 0.3 4.8 1 2.5 7.9 0.7 193.7 
-1 G 0.5 7.8 0.2 2.3 8 0.7 0.4 0.7 1.1 1.2 18.7 8.2 7.9 44.7 - 0 0 2.9 23.7 6.9 19.4 21.9 9.7 4.3 3 194.1 
1 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0.1 
2 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0.1 
3 A 13.4 2.7 14.9 2.6 1.1 5 1.7 0.7 2.6 3.3 8.1 4.7 6.8 7.7 3.5 0 0 - 21.3 5.7 0.1 20 3.5 5.8 7.2 142.4 
4 A 1.5 1.9 1.5 1.5 1.4 3.1 0.3 1 14.1 3.8 4.6 2.3 7.2 9.1 23.4 0 0 12.4 - 12.4 4 14.8 1.5 9 10.5 141.4 
5 at 3.6 0.4 8.3 0.6 5.2 6.9 4.5 12.7 7.9 3.8 16.1 2.5 4.5 0.5 32.9 0 0 10.4 8.5 - 89.4 20.3 20.9 9.5 29.1 298.6 
6 T 9.3 0.4 1 5.1 6.8 1.7 4.2 5.3 4.4 4.5 0.8 3.8 1.1 1.6 4.5 0 0 0.2 6.3 3.1 - 17.6 18.9 1.8 7.9 110.4 
7 T 7.8 4.8 6.4 3.9 4.3 18.4 0.2 3.5 9.9 2.1 0.3 7.4 9.2 1.3 30.8 0 0 2.9 22.1 2.4 4.6 - 21.2 16.6 4.3 184.4 
8  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0.1 
9 T 1.9 9.6 1.6 11.3 3.7 1.4 3.1 1 1.7 6.3 3.6 4.3 1.2 9.1 4.8 0 0 1.3 12.8 1.9 5.5 17.7 27.5 - 5.6 136.9 

10 T 4.6 3.5 3.6 5.2 1.8 8.6 4.1 4.3 10.6 9.9 2.4 2.1 6.6 3 5.5 0 0 1.7 13.2 5.5 5 16 7.2 22.7 - 147.1 

 

Table 3. Continued. 
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5.2.3. Building an MDD model 

 

Note:  All single submodel files (WMMs/PSSMs) used for an MDD model must be located in 
the same file path.  

 

Start the application: MDD 

1. Select a Name for your model. Optionally add a short description. 

2. Select an Alignment file containing a set of aligned sequences containing your signal. 

3. Select a file containing Background frequencies (used for the calculation of pseudocounts). This 
file contains the expected nucleotide frequencies of the region where your signal is present. 
Frequency files can be created using SeqoolM (Menu-item: Statistics|Oligonucleotides). 

4. Select if you want to use conventional PSSMs using Log-odd scores or Information content. 

5.  Select a Cutoff value (nucleotide percentage) for the calculation of the consensus (30 percent 
should be good in most cases. 

6. Select the Significance level for the χ²-tests (0.001 should be good for most cases).  

7. Define when to stop the iterative decomposition of the sequence set, i.e. at which minimum 
number of sequences in a subset. Too low numbers will result in the subdivision into too many 
subsets with too few sequences for each subset, which results in an unreliable model.  

8. If you have chosen to build a model calculating log-odds scores, select the Weight of 
pseudocounts. Models with small weights might not identify some real signals, while large 
weights will lead to unspecific models. 

9. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a 
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.  

10. Select a Colour for the graphical representation of hits of this model in Seqool. 

11. Press the Run MDD button. 

 

 

Evaluate the model using the following options: 

 

Show decision tree  Display matrices and other results 

Score sequences Score a set of sequences. Use this option to reveal the best score threshold 
by comparing score distributions of real signals and false signals (or random 
sequences) and for testing a model. Note that the sequences should have 
the same length as those of the alignment file used for training the model. 
For longer sequences additional nucleotides are ignored. The dialog offers 
some additional options, such as the saving of sequences above a score 
threshold. 
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5.3. Profile Hidden Markov Models (PHMM) 

Module PHMM 

5.3.1. Introduction 

Profile hidden Markov models are similar to Weight matrices, since they measure nucleotide 

frequencies for each position of a signal, but they additionally include the possibility that some 

residues are missing or that residues are inserted into a signal. Since most signals on DNA or 

RNA are uninterrupted short sequences, e.g. snRNAs of the splicing complex, simple matrices 

are adequate for their identification. However, in some cases binding mechanism involve more 

than one recognition motive. For example in the polypyrimidine-tract-binding proteins two RNA 

recognition motives were proposed (Banerjee et al. 2003). When binding to the polypyrimidine 

tract, two short subsequences are recognized, which are separated by a variable stretch of 

unbound RNA.  

 

5.3.2. Example 

For illustration of how profile HMMs are built, a simple alignment of fictive sequences is used: 

 

123456789 
Sequence 1   aca---atg 
Sequence 2  tcaactatc 
Sequence 3  tcaactatc 
Sequence 4  acac--agc 
Sequence 5  aga---atc 
Sequence 6  accg--atc 

 

A weight matrix from this alignment contains the following probabilities: 

 
Pos    1    2    3     4    5    6    7    8     9 

A       0.66 0.00 0.83 0.50 0.00 0.00 1.00 0.00 0.0 0 

C       0.00 0.83 0.00 0.25 1.00 0.00 0.00 0.00 0.8 3 

G       0.00 0.17 0.17 0.25 0.00 0.00 0.00 0.17 0.1 7 

T       0.33 0.00 0.00 0.00 0.00 1.00 0.00 0.83 0.0 0 

 

Notably, this weight matrix does not include any information about the inserted bases (inserts) 

observed in the sequences 2 and 3 (inserted CT), and about the missing bases in the 

sequences 1 and 5 (missing base at position 4). In reality, it is not really evident which bases 

are missing or which ones are inserted. It could be argued that sequences 2, 3, 4, and 6 have 

inserts, but of variable length (no sequences would show a missing base then). In order to 

analyse this alignment more systematically, those positions which are covered in the majority of 
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all sequences are assumed to reflect the “original” signal (applying a minimum percentage of 

50%). These positions are labelled “matches” (marked with an M): 

 

123456789 
aca---atg 
tcaactatc 
tcaactatc 
acac--agc 
aga---atc 
accg--atc 
MMMM  MMM 

 

Given these labels, two sequences of this alignment contain an insert beginning after position 4 

(2 of the 4 sequences which have a base at position four = 50 %). In these two sequences, the 

insert is followed by another insert in one case, while the next time, the insert ends (an insert of 

two nucleotides). That means, that once the insert “starts”, the probability “continuing” the insert 

is 50 %. Apart from the two sequences containing the insert, 2 sequences of all 6 lack a base at 

position 4 (33 %). Referring again to the defined “matches”, the probability of continuing with a 

second missing base (a “delete”) is 0. Since these sequences show a base at the next “match” 

position (position 7), the probability of continuing with a “match-state” is 1. 

 

Combining this information about “deletes” and “inserts” with the weight matrix, the following 

graphical representation of the profile HMM results (Plan 9 architecture, Figure 48). Deletes are 

represented by circles at the top. Inserts are depicted as diamonds in the middle of the graph. 

Matches are shown as rectangles at the bottom of the graph. They also contain the 

probabilities of the weight matrix. Lines connecting these match-, insert, and delete “states” 

correspond to the probabilities of observing a transition from one state (match, insert, delete) to 

another. 

1,000 1,000 1,000 0,667

0,333

0,500

0,500
0,500

0,500

1,000

1,000 1,000 1,000
Begin

a = 0,612
c = 0,030
g = 0,042
t = 0,315

a = 0,024
c = 0,761
g = 0,167
t = 0,048

a = 0,761
c = 0,167
g = 0,048
t = 0,024

a = 0,473
c = 0,241
g = 0,259
t = 0,027

a = 0,909
c = 0,018
g = 0,055
t = 0,018

a = 0,024
c = 0,048
g = 0,167
t = 0,761

a = 0,024
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End

 
Figure 48. A simple example of a profile HMM (drawn using the module PHMM). 
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When searching for a signals within an unknown sequence, a putative hit sequence is 

“reconstructed” by the HMM by trying to find a way (“path”) through the HMM, which 

corresponds to the sequence. Due to inserts and deletes, an identical sequence can usually be 

generated by a number of different paths through the graph (except in the simple example 

given above). For scoring a sequence, either the score of the most probable path is calculated 

(Viterbi-algorithm), or the cumulative score of all possible paths (Forward-algorithm). The Plan 

9 profile HMM of Seqool uses the latter method. 

 

As in profiles models, pseudocounts calculated from substitution matrices can be added also to 

profile HMMs, and models can be built using either mono-, di-, or trinucleotides (order). 

 

5.3.3. Building a PHMM 

 

Start the application: PHMM 

1. Select a Name for your model. Optionally add a short description. 

2. Select an Alignment file containing a set of aligned sequences containing your signal. 

3. Select a file containing Background frequencies (used for the calculation of pseudocounts). This 
file contains the expected nucleotide frequencies of the region where your signal is present. 
Frequency files can be created using SeqoolM (Menu-item: Statistics|Oligonucleotides). 

4. Select if you want to use nucleotide (order 1), dinucleotide (order 2) or trinucleotide counts (order 
3) for you model. Usually, nucleotide counts do well. 

5. If you want to calculate a PHMM using di- or trinucleotide counts and you do not have the 
respective background-frequency-file available (i.e. the “*.fre” file for di- or trinucleotides), you 
might select the option Estimate di-/tri-nucleotide frequencies from nt frequencies. In this case 
only a nucleotide frequency file is needed as background-frequency-file, and di- or trinucleotide 
frequencies are roughly estimated based on that file. However, it is recommended always to use 
a background frequency file. 

6. Define match-states: Either define matches automatically, choose a Insert cutoff value, e.g. 
define a match if no more than 50 percent of all sequences show a missing base at a position, or 
select match-states manually by using the option Select match-states. 

7. Optionally select Model insert emissions with from frequencies from alignment. In this case, the 
probability of observing each base in a given insert is calculated from the observed nucleotide 
frequency of that insert. 

8. Select the Weight of pseudocounts. Models with small weights might not identify some real 
signals, while large weights will lead to unspecific models. 

9. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a 
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.  

10. Select a Colour for the graphical representation of hits of this model in Seqool. 

11. Press the Build button. 
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Evaluate the model using the following options: 

 

Show parameters    Display model parameters 

Draw HMM      Create a graphical representation of the model 

Score sequences  Score a set of sequences. Use this option to compare score distributions 
of real signals and random or false sequences, for evaluating score 
thresholds, and for testing a model. Note that the sequences should 
have the same length as those of the alignment file used for training the 
model. For longer sequences additional nucleotides are ignored. The 
dialog offers some additional options, such as the saving of sequences 
above a score threshold. 

Show Matrix for Seqs…  Score a set of sequences and display the matrices displaying the paths 
through and scores of the HMM.  
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5.4. Oligonucleotide-frequency-models (OFM) 

Module OFM 

5.4.1. Introduction 

Oligonucleotide-frequency-models (OFMs) score the composition of a sequence, based on  the 

frequencies of oligonucleotides (note that the module DefOFM additionally allows the use of 

GC content, codon usage, or codon preference instead). OFMs were introduced by Wang and 

Marin (2006) who applied them in combination with profiles and other models for the 

classification of constitutive and cryptic/alternative splice sites. When a signal is not 

characterized by a specific recognition motive alone, but also by a certain oligonucleotide 

distribution (e.g. due to the presence of regulatory elements, or due to codon usage), then 

addition of an OFM to a classical signal search model can increase the overall recognition of 

the signal. In constitutive acceptor splice sites, for example, splice site recognition can be 

enhanced by combining a profile or PSSM model for the core splice site with an OFM model for 

the downstream exon, and another OFM of the upstream intron. These OFMs can model the 

different oligonucleotide distributions in exons and introns. When using such a combination for 

searching splice sites within unknown sequences, splice site recognition will be based on both, 

the detection of a strong core splice site and the occurrence of downstream and upstream 

stretches with oligonucleotide compositions which are typical to introns or exon, respectively.  

 

During the training process of OFMs, oligonucleotide frequencies are first calculated from a 

training set. After all frequencies are known, a given test-sequence can be scored using the 

following formula: 

 

∑ 












=

background

observed

p

p
score 2log  

 

where pobserved is the observed frequency of a given oligonucleotide and pbackground is the expected 

or background frequency of that nucleotide.  

 

Besides OFMs, this program module includes other sequence composition statistics, such as 

codon usage or GC content.  
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5.4.2. Example 

The following example demonstrates the calculation using an OFM for the first 24 nt of 

(constitutive) human exons. Trinucleotides will be used in this example. Table 4 lists the 

frequencies of trinucleotides observed in the exon start region (1..24 nt) and the frequencies for 

whole exons (background frequencies).  

 

 
 Frequency observed Background frequency a 

aaa 0.0206 0.0155 
aac 0.0146 0.0131 
aag 0.0212 0.0239 
aat 0.0142 0.0091 
aca 0.0171 0.0163 
acc 0.0156 0.0186 
acg 0.0086 0.0079 
act 0.0142 0.0133 
etc. etc. etc. 

 

Table 4. Trinucleotide frequencies for the first 24 nt of constitutive human exons. a Trinucleotide 

frequencies from Burset and Guigo (1996). 

 

Based on these frequencies the score of the sequence AAACAAT is calculated (this sequence 

contains the trinucleotides AAA, AAC, ACA, CAA, and AAT): 
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The positive score indicates that the sequence AAACAAT shows a trinucleotide composition 

which is more frequent in the exon start region (first 24 nt of an exon) than in average exon 

sequences.  

 

5.4.3. Adding Pseudocounts 

Especially for long oligonucleotides frequencies are difficult to estimate reliably using a limited 

number of training sequences. For example, the use of oligonucleotides of length six results in 

46 = 4096 different hexamers whose frequencies have to be estimated from a training set. It is 
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likely that some of the hexamers are rarely or even never observed. In such cases, it is strongly 

recommended to include pseudocounts in the model, otherwise sequences containing very rare 

oligonucleotides are incorrectly scored. As for the previous model types, pseudocounts of 

OFMs are derived from PAM substitution matrices and can be adjusted using a pseudocount 

weight (see Durbin et al. 1998). 
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5.4.4. Building an OFM 

 

Start the application: OFM 

1. Select a Name for your model. Optionally add a short description. 

2. Select an Alignment file containing a set of aligned sequences containing your signal (only 
necessary for calculation of oligonucleotide frequencies). 

3. Select a file containing Background frequencies (only necessary for calculation of oligonucleotide 
frequencies; used for the calculation of pseudocounts). This file contains the expected nucleotide 
frequencies of the region where your signal is present. Frequency files can be created using 
SeqoolM (Menu-item: Statistics|Oligonucleotides). 

4. Select if you want to use score Oligonucleotide frequencies, GC content, Codon usage, or 
Codon preference. 

5. If you selected oligonucleotide frequencies: 

- Choose the Length of the oligonucleotides to score 

- Select a Pseudocount weight. Models with small weights might not identify some real 
signals, while large weights will lead to unspecific models. Alternatively you may define a 
default frequency for oligonucleotides (“words”) which were never found in your set of 
sequences. This makes the calculation much faster. For hexanucleotides, the calculation 
of pseudocounts with a given weight can take 15 minutes. If you don’t want to wait, just 
kill the program and use default frequencies for missing oligonucleotides. 

- If you want to calculate an OFM using oligo-nucleotides and you do not have the 
respective background-frequency-file available (i.e. the “*.fre” file), you might select the 
option Estimate oligonucleotide frequencies from nt frequencies. In this case only a 
nucleotide frequency file is needed as background-frequency-file, and oligonucleotide 
frequencies are roughly estimated based on that file. However, it is recommended 
always to use a background frequency file.  

If GC content, codon usage, or codon preference was selected: 

- Select the Length of your model, i.e. for how many bases the model shall be calculated. 

- Optionally select to score only the best reading frame. This might be useful for scoring 
e.g. exon codon usage. If this option is selected, only the highest of all three scores (of 
the three reading frames) will be reported. 

- Optionally choose a file containing the codon usage and codon preference information 
for a specific organism. The default setting uses human data. 

6. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a 
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.  

7. Select a Colour for the graphical representation of hits of this model in Seqool. 

8. Press the Build button. 

 

 

Evaluate the model using the following options: 

 

Show parameters    Display model parameters 

Score sequences Score a set of sequences. Use this option to compare score distributions 
of real signals and random or false sequences, and for evaluating score 
thresholds. The corresponding dialog offers some options, such as the 
saving of sequences above a score threshold.  
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5.5. An RNA binding model based on binding energy 
(RNAbind) 

Module RNABind 

5.5.1. Introduction 

This experimental model calculates the binding energy for a given nucleotide sequence and a 

RNA- or DNA-binding motif, not taking the formation of loops or bulges into account. This 

model is appropriate for short binding signals, e.g. snRNA binding signals, where the formation 

of loops is unlikely. The model uses default binding energies, listed below. However, energies 

can be selected by the user. The overall binding energy is calculated by the sum of the 

energies of all single bases.  

 

 A C G T 
A 0 0 0 -2 
C 0 0 -3 0 
G 0 -3 0 -1 
T -2 0 -1 0 

 

Table 5. Default binding energies used in RNAbind. 

 

5.5.2. Example 

The donor splice site is recognized by the factor U1 snRNP in the first step of splicing. This 

recognition is caused by base-pairing of a short stretch of the snRNA-part with the splice site 

(positions –2..+6). In human the sequence of this signal is TCCATTCA (or UCCAUUCA, 

respectively). The calculation of the binding energy for a fictive test-sequence is illustrated: 

 

U1 snRNA binding motive:      t   c   c   a   t   t   c   a  

Test-sequence:          a   g   a   t   g   a   c   c  

 

Binding energy for each base pair: -2  -3   0  -2  -1  -2   0   0   

Total binding energy:      -10      

 

When scoring real constitutive donor sites and false donor splice sites (i.e. sequences found 

near real donor splice sites which contain a GT dinucleotide, but are not real constitutive splice 

sites), two partially overlapping score distributions are observed (Figure 49). Both distributions 

are separated at an energy-threshold of about 12.5. Using this threshold, about 90 percent of 

true and false donor constitutive splice sites are classified correctly. 
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Figure 49. Score distributions of real (constitutive) donor splice sites and false splice sites (sequences 

found near real donor splice sites containing a GT dinucleotide, but not being confirmed constitutive 

splice sites). Blue - Confirmed constitutive donor sites. Red – False donor splice sites. Green - 

overlapping scores. Sequences were retrieved from the Altextron database (Clark and Thanaraj 2002).  
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5.5.3. Building a RNAbind model 

 

Start the application: RNAbind 

1. Select a Name for your model. Optionally add a short description. 

2. Select an Alignment file containing a set of aligned sequences containing your signal. 

3. Enter a Binding sequence to which putative signals will be bound to. 

4. Optionally change default binding energies. 

5. Select an energy Threshold. If the score of a putative hit is above this value, it is designated to 
be a positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.  

6. Select a Colour for the graphical representation of hits of this model in Seqool. 

 

 

Evaluate the model using the following options: 

 

Show parameters    Display model parameters 

Score sequences Score a set of sequences. Use this option to compare score distributions 
of real signals and random or false sequences, for evaluating score 
thresholds, and for testing a model. Note that the sequences should 
have the same length as those of the alignment file used for training the 
model. For longer sequences additional nucleotides are ignored. The 
dialog offers some additional options, such as the saving of sequences 
above a score threshold. 
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5.6. Scoring the relative position of a signal: Dis tM 

Module DistM 

5.6.1. Introduction 

In some cases the binding efficiency of a signal depends on its location relative to another 

signal. E.g. the efficiency splicing enhancer signals or the polypyrimidine tract depend on the 

distance relative to the acceptor splice site. DistM allows to estimate the distance of a signal by 

scoring all subsequences within a given window size and finding the position with the highest 

score, which probably represents the putative signal. For example, for including the information 

of how far the polypyrimidine tract is located from the acceptor splice site, a DistM model can 

be used as illustrated in Figure 50.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. Scheme of the application of DistM: Within a given window size DistM searches for the 

strongest signal (here of the polypyrimidine tract) and returns the distance of that signal relative to the 

current position of the model (here the acceptor splice site).  

 

 

For using a DistM model, a basic signal recognition model must first be provided for searching 

a signal within the indicated region (window). DistM will report the position of the best hit within 

this window (i.e. the position of the highest-scoring signal), not the score itself. Consequently, 

DistM can not be used for searching signals, but it is rather used as a submodel of other higher 

models, such as decision trees or neural networks. 

 

       Intron      Acceptor splice site         Exon 

Window in which DistM searches 
for the strongest signal 

Score 

Most probable position of 
the polypyrimidine tract 
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5.6.2. Building a DistM model 

 

Start the component: DistM, when starting up, make sure you choose the model directory containing 
your model files. The path containing any submodels to be used with DistM must be indicated before 
building the model. The model path can be changed by pressing the “Directory” button. 

1. Select a Name for your model. Optionally add a short description. 

2. Select the signal search Model which shall be used for searching the highest-scoring signal. 

3. Select the Range in which to search with the specified model. 

4. Press the Build button. 

 

Evaluate the model using the following options: 

 

Score sequences Score a set of sequences. Use this option to compare score distributions 
of real signals and random or false sequences, and for evaluating score 
thresholds. The corresponding dialog offers some options, such as the 
saving of sequences above a score threshold.  
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6. Combining models 

6.1. Hybrid Models: Adding or subtracting scores of  several 
models  

Module HyM 

 

The combination of two models may useful for increasing the overall recognition performance. 

A simple way to combine models is to add or subtract the scores of each model. This will be 

demonstrated by the following simple example. The aim of this example model is to recognize 

human constitutive acceptor splice sites, or in other words, to distinguish human constitutive 

acceptor splice site from “false” splice sites (subsequences containing AG but not being real 

splice sites). In a first step a PSSM using information content is constructed for the region -

10..+2 nt of the acceptor splice sites. A score threshold of 4.95 results in 19.7 percent false 

positives (false splice sites recognized mistakenly as true splice sites) and 19.0 false negatives 

(true splice sites classified as false splice sites). Since coding exons usually have a higher 

codon usage, the recognition of splice sites might be enhanced by including this information to 

the model. This information can be added by combining the previous PSSM (–10..+2 nt) with 

two additional OFM models scoring codon usage upstream and downstream of the splice site 

(24 nt length each). Both models are combined with the previous PSSM using the component 

HybridModels. For combining the models each model file is loaded (button Add) and the 

position where to apply each submodel is specified (option Search at position): In order to 

analyse a set of true and false splice sites which contain the nucleotides +24 to +24 of the 

splice sites, or false splice sites respectively, the position of the PSSM is set to +10 (from the 

start of the sequence, i.e. 24-10). The OFM for codon usage is used twice, first at the beginning 

of the exon (position +24 nt, since the exon begins at position 24 in the sequences), and 

second at the end of the intron (position 0, since the length of the OFM is exactly 24 nt). Two 

OFMs are included, because codon usage is expected to differ between exons and introns (i.e. 

downstream and upstream the splice site). Since codon usage is expected to be high in the 

downstream exon, the score of the respective OFM is be added to the score of the PSSM. The 

codon usage of the upstream intron, on the other hand, is expected to be low. Consequently, 

the score of this OFM is subtracted. The final settings of this hybrid model are shown in Figure 

51. Score distributions for real and false human acceptor splice sites are shown in Figure 52.  

 

An additional option (Search for the best hit between) allows to score the best hit for a signal 

only. This might be useful when the strength of a signal shall be measured, which possibly 

influences another signal. In this case the exact position of or distance between the signals 
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might not be essential for their recognition, rather it might be sufficient that both signals are 

observed near each other.  

 

 

 

Figure 51. Settings for a hybrid model, comprizing one PSSM for the human acceptor splice site, and two 

composition models for codon usage (see text for details). 

 

 

 

Figure 52. Score distribution of constitutive acceptor splice sites and false splice sites (intronic 

sequences near the splice sites containing AG, but not being confirmed real splice sites) calculated using 

a hybrid model combining a PSSM (-10..+2, using information content), an OFM using codon usage for 

the exon start (+1..24), and an OFM using codon usage for the intron end (-24..-1). The scores of the first 

two models are added, the score of the last is subtracted. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Hybrid Models: Adding or subtracting scores of several models  Combining models 

  68 

6.1.1. Building a hybrid model 

 

Start the component: HyM, when starting up, make sure you choose the model directory containing 
your model files. 

1. Select a Name for your model. Optionally add a short description. 

2. Add models you want to combine. 

5. Specify the Position where to apply the model. E.g. use position “0” for a model for the core 
acceptor splice site (covering e.g. bases –10..+2) and a model for exon codon usage (covering 
e.g. the first 6 codons) at position “+10”, i.e. exon start. Alternatively, you may choose to score 
only the best hit within a region, i.e. the position where the highest scoring hit was found. 

6. Select if you want to Add or Subtract the model’s score. 

3. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a 
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.  

4. Select a Colour for the graphical representation of hits of this model in Seqool. 

7. Press the Build button. 

 

Evaluate the model using the following options: 

 

Score sequences Score a set of sequences. Use this option to compare score distributions 
of real signals and random or false sequences, and for evaluating score 
thresholds. The corresponding dialog offers some options, such as the 
saving of sequences above a score threshold.  
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6.2. Combining models using decision trees 

Module DecisionTree 

6.2.1. Introduction 

A decision tree provides a classification method which, in signal recognition, makes a series of 

observations about a putative signal and then classifies the signal by making binary decisions 

(yes/no) for each observation. Graphically, decision trees are trees with bifurcations, each 

bifurcation represents one decision. Figure 53 shows a simple decision tree for the recognition 

of constitutive human acceptor splice sites, as an example. Acceptor splice sites are measured 

by three models (results from these models are the “observations”), a PSSM for the positions –

10 to +2, and by two composition models, one for upstream codon usage (-24..-1) and another 

for downstream codon usage (+1..+24). These three models represent the nodes of the tree. 

For analysing splice sites, the model of each node analyses a putative signal sequence. Then, 

a classification decision is made based on the resulting score of the respective model and the 

process is repeated for the next node, until a terminal branch, representing the final 

classification decision, is reached. In this example, the decision tree first analyses the PSSM 

score. If the score of this model is below zero, then the sequence is most probably not a splice 

site (see to the score distribution of this PSSM, Figure 46). So the sequence will be classified 

as a False splice site. Otherwise, the sequence is analysed regarding the downstream codon 

usage, which is expected to be above 0 for real splice sites. If codon usage is below 0, then the 

sequence is probably not a real splice site, consequently it is classified a False splice site. 

Otherwise, upstream codon (which should be low for real constitutive splice sites) usage is 

analysed too. If upstream codon usage is high, then the sequence is classified again as a False 

splice site. Otherwise, the sequence is finally classified as a real Acceptor splice site. 

 

With the present score thresholds, classification performance is still insufficient, because 

threshold have only been roughly guessed. Only 18.8 percent of real splice sites and 98.9 

percent of false splice sites are recognized correctly. However, the module DecisionTree offers 

an automatic optimisation of thresholds. The optimised thresholds improve recognition to 86 

percent for both real splice sites and false splice sites (14 percent false positives and 14 

percent false negatives). Note that this decision tree performs better than the hybrid model 

mentioned in the previous chapter which used the same submodels. 
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Figure 53. Example of a simple decision tree for the human acceptor splice site (constitutive). 

 

 

6.2.2. Construction of a decision tree 

In this example, the decision tree for human acceptor splice sites mentioned above will be 

constructed as an example of how to use the component DecisionTree. After starting the 

module DecisionTree, the tree is named and possibly a short description of the tree is provided. 

This example is based on the example file ‘Acceptor splice site_human.det’, which is available 

in the directory ‘Examples\DecisionTree’. However, this file will not be loaded at this point, 

because it shall be demonstrated how to build a new decision tree from scratch.  

 

Adding the first node 

The construction starts with the addition of the first submodel, representing the first node in the 

tree. This node is labelled Node 0 in the program. A submodel is added by pressing the Add-

button. In the next windows which opens, a table located at the top of the window lists the 

nodes and models which are included in the tree so far (Figure 54). At present, no submodels 

(nodes) have been added. Below that table the model for the first node (Node 0) can be chosen 

by clicking on the Select-button. Now, a new dialog opens, which lists all models in the 

‘\models’ directory (this is the directory which is used by default, if this directory does not exist, 

then the program asks the user to select the directory containing the submodels at startup. 

However, it can be changed by pressing the Directory-button). Since the models for this 

example are located in the directory “Examples\DecisionTree” the directory has to be changed 

PSSM (-10..+2) 

Score < 0        Score ≥ 0 

Downstream codon usage  

CU < 0             CU ≥ 0 

False splice site

False splice site Upstream codon usage  

False splice site

CU < 0             CU ≥ 0 

Acceptor splice site



Combining models using decision trees  Combining models 

  71 

to this path. Then, the model ‘Acceptor splice site, human, IC (PSSM/WMM)’ is selected from 

the updated model-list and the selection is confirmed by pressing the Select-button. Finally this 

node is named “Acceptor site PSSM”.  

 

In the next step, the position where to apply this first submodel has to be defined. This decision 

tree shall analyse putative splice acceptor sites from the -24 to +24 nt. The PSSM which was 

added for the first node only covers the range -10 to +2 nt. Consequently the search-position 

has to be set to +14 (the nucleotide -24 corresponds to the search position 0, the nucleotide 

+24 corresponds to the search position 48).  

 

Now the two decisions have to be defined for the node. The decision will depend on 

submodel’s score. If the score is below a certain threshold (i.e. the threshold set in the 

submodel itself), then one decision will be made, otherwise the other one. The aim of this first 

submodel is to exclude sequences which are clearly no splice sites and to pass those 

sequences which might be to another submodel. For sequences which are not real splice sites 

the PSSM will produce a low score. The decision for these sequences will consequently be to 

classify them as “false” splice sites. This is done in the program by selecting the option Report 

hit for in the section Action when score < threshold. Then the Text ‘False splice sites’ is added 

(optionally a colour can be chosen for displaying hits in the Seqool main program). Now all 

sequences which have scores below the score threshold of the PSSM, will be labelled ‘False 

splice sites’.  

 

The next step is to define how to treat sequences with a score higher or equal to the score 

threshold of the PSSM. For such sequences codon usage will be analysed by another 

submodel. This submodel will correspond to the next node in the tree, i.e. Node 1. 

Consequently, the option Go to node is selected in the Action when score ≥ threshold box, and 

the Node index is set to ‘1’ (although the respective node has not yet been defined). This 

completes the settings for the first submodel (Node 0). Figure 54 shows all settings for this 

node. Press OK for confirming all settings. 
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Figure 54. Settings for the addition of the first node in the decision tree. 

 

Adding more nodes 

The next node introduces a model for analysing downstream codon usage. The respective 

model (a codon usage composition model with the length 24 nt) is also available in the directory 

‘\Examples\DecisionTree’. In order to add that model select the second row in the node list (in 

the main window) by clicking into the row and then press the Add-Button. As before, the node is 

named first, this node will be named ‘Downstream codon usage’. The model ‘Downstream 

codon usage, 24 nt (OFM)’ is added and the search-position is set to +24, since the position is 

referring to the -24..+24 region of the splice sites. Since, codon usage in exons is expected to 

be high, sequences with low codon usage are labelled ‘False splice sites’. This is done by 

activating Report hit in the bottom box Action when score < threshold (note that the threshold of 

the codon usage model is 0). If codon usage is high, then upstream codon usage will be 

analysed too. Thus the Action when score ≥ threshold is set to the next node (Node 3). Finally 

all settings are confirmed by pressing OK and the last node is added. For this last node, the 

model ‘Upstream codon usage, 24 nt (OFM)’ is used and the node is labelled ‘Upstream codon 

usage’. For high scores, i.e. high codon usage, false splice sites will reported (set Report hit 

and add the text ‘False splice site’), because true splice sites should show a low upstream 

codon usage. Correspondingly, true acceptor splice sites are reported for low codon usage (set 

Report hit and add the text ‘Acceptor splice site’). Finally all nodes of this decision tree have 

been defined. For this example the colour ‘green’ will be selected. This completes the basic 

construction of the decision tree. 
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If the decision tree will be used for searching in the main programs Seqool (or SeqoolM), then 

additional settings should be made. First, an additional option allows to choose a colour for 

displaying hits (in this case sequences classified as ‘Acceptor splice sites’) in the program 

Seqool. Additionally, the relative position where a hit should be reported by Seqool or 

SeqoolM has to be selected. The present model ranges from -24 to +24. Consequently, the 

splice site is located exactly in the middle, i.e. at +24 nt. In order to mark a hit exactly at the 

splice site (i.e. after the AG dinucleotide) set the option Mark hit at to +24. For visualizing hits in 

Seqool, the range where to paint hits can also be specified. If the red bar indicating a hit should 

range from the last two intron bases to the first two bases of the exon, then the range where to 

paint a hit is set to -2..+2 (options Paint hit from … to …). In this example only the intron AG 

should be marked, thus the range is set to -2..-1. 

 

Completing the tree 

Finally the decision tree is complete. Before applying the tree press the button Build decision 

tree, which causes the program to check all submodel files and node connections. After that, 

the option Show decision tree can be used to display a simple graphical view of the tree 

including the submodel files and decisions. The tree may be tested by pressing the button 

Score sequences. Note that sequences for testing the tree must correspond to the length of the 

tree (in this example they must range from –24 to +24 from the acceptor splice site). 

 

6.2.3. Optimisation of thresholds 

With the present score thresholds used in the submodels classification of the decision tree is 

still insufficient. Remember, that the score thresholds of all submodels were simply set to 0. 

These thresholds can be tuned manually in order to enhance the classification performance. 

However, it is time saving to use the automatic optimisation of thresholds which is provided by 

the component DecisionTree. During optimisation procedure thresholds of all (or selected 

submodels) are varied by random until the classification performance of the tree improves (this 

method is not as fast as the gradient descent method, but it is not that prone to get stuck in 

local minima).  

 

For optimising thresholds press the button Optimise thresholds and select the submodels 

(nodes) whose threshold should be optimised (by clicking on the check boxes in the submodel 

list). Select two files, one containing real signals, and the other one containing false signals 

(e.g. random sequences). In the case of the example decision tree for the human acceptor 

splice site one file is provided which contains real splice sites (file ‘AcceptorSpliceSite_human 

_constitutive_5000seqs_-24_24_LearningSet.msa’) and another which contains false splice 
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sites (file ‘FalseAcceptorSpliceSite_human_5000seqs_-24_24_LearningSet.msa’). For each file 

a decision must be assigned, i.e. either the decision ‘Acceptor splice site’ or the decision ‘False 

splice site’. Since the first file contains a list of real splice sites the decision ‘Acceptor splice 

site’ is assigned to the first file. Correspondingly, the decision ‘False splice site’ is assigned to 

the second file.  

 

Finally it has to be specified how to do the optimisation procedure (see options at the bottom of 

the optimisation dialog). The option Precision indicates the step with of random changes. For 

example, when a value of 2.0 is selected, then the score thresholds of the submodels are 

changed in steps of 2.0 (e.g. 2.0, 4.0, 0.0, or 6.0). The maximum deviation from the present 

threshold defines the maximum variation of the thresholds. For example, if the initial threshold 

is 0, the maximum deviation is 10, and the precision is 5, then the random thresholds tested are 

either -10, -15, -5, 0, 5, 10, 15, or 20. The Number of runs defines how many random changes 

are performed in total. If only a single node is optimised a few runs are sufficient (one run 

includes one random threshold assignment and the subsequent classification of the positive 

and negative sequence files). However for optimising thresholds of several submodels at the 

same time many runs are needed. After some time, when acceptable thresholds have been 

determined, the precision and the range of deviation can be decreased gradually, in order to 

fine tune the thresholds. The option Decrease precision and deviation by 50% defines how 

many runs to perform this.  

 

Two more optimisation settings indicate what exactly should be optimised. The maximization of 

the mean of correct decisions maximizes the overall recognition. However, the recognition for 

the positive and negative sequence set might be very different. E.g. the mean correct 

recognition might be 90 percent. But sequences from the positive set might be recognized in 

100 percent of all cases while only 80 percent of the sequences of the negative are recognized 

correctly. In many cases it is preferable to maximize the mean performance, but to minimize the 

difference of correct decisions between both datasets at the same time too. 

 

When running the optimisation (press button OK) the submodel’s thresholds are iteratively 

changed and all sequences in both sequences sets are classified. The user is informed about 

the improvement of the classification during the whole process. At the end (or when the 

process is stopped by the user) the user is asked to confirm if the new thresholds should be 

saved in the submodel’s files. Evidently, scores should be saved only if the scores result in an 

improved classification performance. If the thresholds are far from being adequate, never save 

the score thresholds, because otherwise no further optimisation might be possible: E.g. if the 

optimal score threshold of a given model amounts to 0.0, then saving the model with a 
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threshold of –20.0 is detrimental, because in the next optimisations the score 0 may never be 

reached again, depending on the selected range of variation.  

 

Finally it should be noted why two separate submodels for codon usage were used in this 

example. The reason is the optimisation of the thresholds. The use of two separate files allows 

to save two different (optimised) score thresholds in the files. If a single was used, then only a 

single threshold could not be optimised separately. 
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6.3. Combining models using neural networks 

Module BPNet 

6.3.1. Introduction 

Neural networks are machine learning methods which are inspired by neurobiology. A neural 

network contains several “neurons”. A neuron receives information from other neurons and 

passes information to other neurons. However, in contrast to real neurons, the neurons in a 

neural network are rather simplified. The connection between neurons is regulated by weights. 

It is the adjustment of these weights, which allows a neural network to “learn” to recognize 

some kind of pattern. Figure 55 shows a scheme of an artificial neuron.  

 

 

 

 

 

 

 

 

 

 

Figure 55. Scheme of an artificial neuron. Input neurons (I1-I3) passes a signal to the neuron. The 

strength of the signal from each neuron in adjusted by a weight (W1-W3). The incoming signals are 

summed up and an activation function (ƒ(x)) determines the output of the neuron. 

 

The incoming signals are summed up and evaluated by an activation function (the program 

uses a sigmoid activation function, i.e. ƒ(x)=1/(1+e-x) ), which determines the final output of the 

neuron.  

 

A large number of different network architectures and learning methods exist. The module 

BPNet uses a backpropagation network, which is a rather universal and robust network type. 

backpropagation networks consist at least of three layers of neurons, one input layer, at least 

one hidden layer, and one output layer (Figure 56). The input layer comprizes neurons which 

simply pass information to the hidden layer without modification. The hidden layer can be 

interpreted as the basic part of the neural network, containing some kind of multidimensional 

representation of all information. The final output layer shows the results of the network. A 

putative signal (or pattern) is classified (or recognized) by the neural network depending on 
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which output-neuron is activated most. Each output-neuron represents a classification decision, 

e.g. one neuron may represent the decision ‘the analysed pattern is a restriction site for 

EcoR1’, and the second one may represent the decision ‘the analysed pattern is not a 

restriction site for EcoR1’. If the output-neuron representing the decision ‘the analysed pattern 

is not a restriction site for EcoR1’ is activated most, then the neural network indicates that no 

restriction site was recognized.  

 

The number of nodes in the input layer depends on the number of signals which shall be 

analysed by the network. The number of output nodes depends on the number of classes 

which shall be predicted. If the outcome of a prediction is binary (e.g. is a splice site or is not a 

restriction site), then two nodes are sufficient. For recognizing hand-written letters 26 output 

nodes would needed. The number of neurons in the hidden layer may be arbitrary. It depends 

on the specific task of the network how many nodes to use (and how many hidden layers to 

use), which can be done experimentally by adding or deleting hidden neurons and observing 

the performance of the network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56. Scheme of a backpropagation network with three layers. For details see text. 

 

Two different kinds of parameters could theoretically be adjusted during the training of a 

backpropagation network, the weights and the threshold of the activation functions. In order to 

adjust only the weights, a bias neuron is added to all layers, except the output layer, so that the 

weights from the bias neurons adjust the threshold of the activation function.  
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6.3.2. Training of backpropagation networks 

The training process of backpropagation networks generally includes the following steps: 1. 

Random initialization of all weights. 2. Presentation of data for which the classification is known. 

3. Calculation of the resulting output values of each node (beginning with the input nodes and 

ending with the output nodes, forward pass). 3. Comparison of the output of the output-layer 

with the true classification. 4. Calculation of the mean square error for each node and 

adjustment of the weights connecting to a node using a learning rule and beginning with the 

output nodes and ending with the input nodes (backpropagation). 5. Repetition of all previous 

steps until the mean square error is minimal. 

 

The adjustment of each weight during training is achieved by gradient descent, i.e. by changing 

a weight by a small value (learning rate) in the direction, in which the error decreases. Since 

error minimization may get stuck in local minima, a momentum is usually added, which 

"pushes" the weight over small local minima in the current “learning direction“ (standard 

momentum algorithm). The respective learning rule including this momentum term is: 

)()1( 1 twOtw q
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ji ∆⋅+⋅⋅=+∆ − αδη , where q

jiw∆  is the weight change of the ith weight of node 

j in layer q, q

iδ is the respective error, η is the learning rate, 1−q

jO  is the output activation of the 

previous layer’s neuron, and α is the momentum (ranging between 0 and 1). For a more 

detailed description of neural networks see e.g. Rumelhart et al. 1986. There are also excellent 

introductions to neural networks available on the internet. 

 

6.3.3. Over-learning 

Neural networks are prone to over-learning (see also chapter 6.4). Over-learning occurs when 

a neural network adapts too much to the sequences in the training set and looses its ability to 

abstract, which results in a good classification performance of the known sequences in the 

training set, but to an insufficient classification of unfamiliar new sequences. Over-learning can 

be tracked by using two different sets of sequences, one for training, and another one 

exclusively to observe if over-learning is indicated (cross-verification set). BPNet allows to split 

a set of sequences automatically into two sets, one for training and one cross-verification. 

During the training process, the classification error (mean square error) should be observed in 

both sets. When the error does not decrease for the cross-verification set any further (or if it 

starts to increase again), the training process should be stopped. At this point the neural 

network starts to loose its ability of abstraction. 

 



Combining models using neural networks  Combining models 

  79 

6.3.4. Example of a neural network for the human ac ceptor splice site 

In following a simple example of a backpropagation network will be build for human constitutive 

acceptor spice sites. The model will analyse the splice site from –24 to +24 nt. The same three 

submodels will be used as in the previous example of a decision tree, i.e. a PSSM using 

information content for the nucleotides –10 to +2 of the splice site, a composition model 

measuring codon usage in the last 24 nt of the upstream intron, and a composition model 

measuring codon usage in the first 24 nt of the downstream exon. These models correspond to 

the input neurons of the network. The output layer of the model will consist of the two output 

neurons ‘Acceptor splice site’ and ‘False splice site’. The respective example model file 

‘Acceptor splice site_human.bpn’ can be found in the directory ‘Examples\BPNet’. 

 

After starting the module BPNet, a name and a short description for this model is provided. The 

first model, the PSSM, is added by pressing the Add-button. In the following dialog the directory 

has first to be changed to the example directory ‘Examples\BPNet’ which contains all submodel 

files used in this example. The directory is selected by pressing the Directory-button. Note that 

all submodel files used for the network have to be located in one and the same directory! The 

first submodel is added by selecting the model ‘Acceptor splice site, human, IC (PSSM/WMM)’ 

in the box Available submodels. For each submodel it has to be defined at which position 

(relative to the complete model, i.e. the neural network) it has to be applied. Since the 

backpropagation network will focus on the region -24..+24 nt and the PSSM covers the 

nucleotides from -10 to +2, the search position 14 is entered (option Search at position), which 

is the position from the start (the nucleotide -24 corresponds to the search position 0, the 

nucleotide +24 corresponds to the search position 48). Finally settings are accepted by 

pressing OK. Now the next model is added by pressing the Add-button again. This time the 

model ‘Upstream codon usage, 24 nt (OFM)’ is selected (option Available submodels) and the 

search position 0 is entered (option Search at position), since this model shall cover the 

nucleotide -24 to -1. Again the settings are accepted by pressing OK. Finally the last model is 

added by pressing the Add-button again. This time the model ‘Downstream codon usage, 24 nt 

(OFM)’ is selected and the search position 24 is entered, since this model shall cover the 

nucleotide +1 to +24. After accepting all settings by pressing OK again, all submodels are 

added. 

 

Now the settings for displaying hits should be entered. Since the model focuses on the 

nucleotides -24 to +24, the actual splice site will be located at the position 24. Therefore, the 

option Mark hit at is set to +24. Graphically, hits shall correspond to the AG dinucleotide of the 

acceptor splice sites. Consequently, the positions for which a hit shall be displayed are the 
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nucleotides -2 and -1. Enter these numbers in the respective edit fields (options Paint hit 

from…to). The current settings are displayed in Figure 58. 

 

BPNet models can be pre-processed by other model types, e.g. position specific score matrices 

(PSSM). Pre-processing models are used to exclude sequences from further analysis by the 

network, e.g. such sequences which are evidently not target sequences. Therefore, the use of 

a pre-processing model increases the speed when scanning many sequences with a BPNet 

model, and it may also be used to increase the accuracy of classification. In the present 

example a simple pre-processing model will be used in order to exclude all sequences which 

do not contain the AG-dinucleotide at the central position of the splice site from further analysis. 

This model (a simple PSSM for the nucleotides A and G) is provided in the example directory 

‘Examples\BPNet’ (file: ‘Preprocessing model_AG.psm’). To add the pre-processing model 

press the button Select model in the pre-processing section. Then choose the model ‘AG 

(PSSM/WMM)’ and set the search position to the +22, so that the pre-processing model covers 

the AG-dinucleotide of the core splice site (see Figure 57). Finally, confirm the settings by 

pressing OK. Now the model is ready for training. The final settings are shown in Figure 58.  

 

 

 

Figure 57. Selection of the pre-processing model. 
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Figure 58. Settings of a backpropagation model for human acceptor splice sites after the addition of the 

submodels.  

 

For training, two sets of sequences are needed, one set containing real acceptor splice sites 

(file ‘AcceptorSpliceSite_human_constitutive_5000seqs_-24_24_LearningSet.msa’) and 

another one containing false splice sites, i.e. sequences containing AG, but not being real 

splice sites (file ‘FalseAcceptorSpliceSite_human_5000seqs_-24_24_LearningSet.msa’). For 

optimal classification all training set should be of equal size, i.e. each should contain the same 

number of sequences. Both sets will later be subdivided in order to create a training set and set 

for cross-verification. By pressing the Build training set button, a dialog opens which allows to 

choose all files to be used for training. Files can be added by clicking in the respective cell of 

the table (column File). First the file ‘AcceptorSpliceSite_human_ constitutive_5000seqs_-

24_24_LearningSet .msa’ is chosen by clicking in the first row of the table (column File). This 

file contains the confirmed, real splice sites, therefore this file is assigned to the class ‘Acceptor 

splice site’ (enter the text ‘Acceptor splice site’ in the second column of the table). Next, the file 

‘FalseAcceptorSpliceSite_human_5000seqs_-24_24_LearningSet.msa’ is added by clicking in 

the second row of the table (column File). The assigned class is ‘False splice site’. The current 

settings for building the training set are shown in Figure 59. The option Exclude sequences with 
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a bad score should be activated. This excludes all sequences, which contain invalid letters 

(other letters than those allowed for the current molecule, e.g. for DNA only A, G C, and T are 

allowed) or which are too short. Since scores can not be calculated for these sequences, the 

respective submodels report a score of -100. The option Display scores shows each score of 

each submodel and for each sequence. 

 

 

Figure 59. Settings of the dialog for building the training set. 

 

After pressing Continue, another dialog appears for adding additional settings which are only 

relevant when the network is used in the main programs Seqool or SeqoolM. This dialog 

allows to select the colour for the graphical display of hits and which class not to report. For this 

example, only real splice sites should be reported. Therefore, the option Don’t report hits for 

class is set to the class ‘False splice site’. For the displaying hits of real splice sites the colour 

red is selected by clicking in the respective row of the table. Figure 60 shows the settings for 

this dialog. 

 

 

Figure 60. Settings for the display of hits for the main programs Seqool and SeqoolM. 
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After pressing Continue, scores are calculated for all submodels and all sequences which are 

provided in the two given files of real and false acceptor sites. Subsequently, a final dialog 

appears, which prompts the user to split the total set into a training set and a set for cross-

verification of given size (Figure 61). This dialog proposes a subdivision into two equally sized 

halves. However, the user is free to change the size of the subsets or even to select not to use 

a cross-verification set. After pressing Continue, the sets are built and saved into a temporary 

file.  

 

 

Figure 61. Dialog for the subdivision into a training set and a set for cross-verification. 

 

The network is trained by pressing the Train network button, which opens a new window with a 

variety of options. In the top of the window, a graph shows the change of the error (mean 

square error) of the network during the training process. This error will be shown for the training 

set and the cross-verification set. On the right side of that graph, some basic information is 

listed, i.e. the number of training process performed (epoch), the mean square error (MSE) of 

the training and the cross-verification set, and the performance of the network for both subsets 

(training and cross-verification).  

 

Settings: Network architecture 

The lower boxes allow to make settings for the network and the training process. The network 

architecture can be changed by setting the number of layers (three layers, i.e. one input, one 

hidden, and one output layer, are usually sufficient). The number of input neurons corresponds 

to the number of submodels used. The best number of hidden neurons (Hidden units layer 1 or 

layer 2) should be determined experimentally. The number of output neurons is defined by the 

number of classes used. In this case two classes (‘False splice site’ and ‘Acceptor splice site’) 

were defined. 

 

Settings: Training settings 

The learning rate (η) determines the speed of the learning process. A high value increases the 

speed, but decreases accuracy. The momentum is the value α (see introduction). The default 
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value will usually perform well. The option randomise weights before start has to be activated 

for the initial training process. If the initial training was insufficient and the network has to be 

trained further, then this option can be deactivated. Batch- and Online-training refers to the 

training method. For online training, weights are adjusted after each single sequence of the 

training set. For batch training, weights are adjusted only after scoring all sequences. This 

results generally in a higher accuracy, but it slows the training process down.  

 

For each sequence each output neuron will have an output activation ranging from 0 to 1. For 

example the output neuron for the class ‘Acceptor splice site’ and the class ‘False splice site’ 

might amount to 0.90 and 0.03, respectively. The neuron which shows the strongest activation 

shows the most probable class of the given sequence. In this case the activation is strongest 

for the class ‘Acceptor splice site’ which indicates that the sequence is probably a real splice 

site. The high activation of this node compared to the low activation of the other node shows 

that the classification is quite reliable, whereas activations of 0.60 and 0.48 would indicate an 

unreliable classification. The accept threshold determines at which output activation to accept a 

classification of a sequence. This allows to exclude classifications which are not very reliable. 

In the present example all sequences will be classified, so the accept threshold is set to 0.5. 

 

Settings: Stop training 

The training process can either be stopped after a given epoch, in dependence of the mean 

square error, or if the mean square errors of the training and the cross-verification set indicate 

over-learning. An alternative way for avoiding over-learning is to estimate the epoch when over-

learning begins by trial and error. 

 

Display options 

During the training process the changing weights of the neural network can be shown 

graphically. Options for customizing the display include Display connection weights, Actualize 

after each epoch, and Display models and classes. 

 

Training 

For this example a neural network with one hidden layer and 10 hidden neurons will be used. 

The training method batch-training is selected, a learning rate of 0.5 is selected, and the 

training will be stopped after 2000 epochs. For the remaining training settings default values will 

be used. The training is started by pressing the Train-button. Figure 62 shows the decrease of 

the mean square error of the neural network during the first 1000 epochs.  
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Figure 62. Mean square error (MSE) decrease during the training process of the backpropagation 

network (x-axis: number of epochs). 

 

After training for 2000 epochs, the final classification performance was 87.9 percent for the 

training set and 87.4 percent for the cross-verification set. Over-learning was not indicated, 

since the mean square error of the cross-verification set continuously decreased. Figure 63 

shows the architecture of the trained network. Notably, the strongest weights (absolute values) 

in the input layer are found for the PSSM submodel and the model for downstream codon 

usage. This indicates that these models are more relevant for splice site recognition than the 

model for upstream codon usage. 

 

 

Figure 63. Architecture of the trained backpropagation network for constitutive human acceptor splice 

sites. Red connections between neurons indicate positive weights, blue connections indicate negative 

weights. The absolute value of weights is reflected the thickness of the connections.  

 

More details about the classification performance can be displayed by pressing the Classify-

button. This information includes the number of false and true positives and negatives, and the 

relation of correctly identified (more correctly classified) sequences in relation to the total 

PSSM using information 
content (-10..+2) 

Upstream codon 
composition (+1..+24) 

Downstream codon 
composition (-24..-1) 

Acceptor splice site 

False splice site 

Bias neuron 

Bias neuron 



Combining models using neural networks  Combining models 

  86 

number of sequences C/(C+W). It results that 91.1 percent of real acceptor sites and 84.7 

percent of false acceptor splice sites is classified correctly for the cross-verification set (see 

Figure 64), which is a notable increase compared to the classification performance of the 

decision tree example presented earlier. However, the performance could still be increased by 

including more information of the sequences, e.g. hexamer frequencies (as in the default 

BPNet acceptor splice site model provided with Seqool). The sensitivity and specificity of the 

example model can easily be obtained using the results in the classification dialog (Figure 64, 

verification set!).  

 

 

Figure 64. Classification performance of the neural network for the training set and the cross-verification 

set. 

The sensitivity is the fraction of correctly identified signals, i.e. the number of true positives (TP) 

relative to the number of all true signals (true positives and false negatives, FN, together). For 

the present model 2266 true positives (correctly identified splice sites, see Figure 64) and 219 

false negatives (not recognized real splice sites) were observed. Additionally, 2 sequences 

could not be classified (NC). Then the sensitivity amounts to TP / (TP+FN+NC) = 2266 / 

(2266+219+2) = 0.911, or 91.1 percent. The specificity is the fraction of true negatives relative 

to the number of all false signals. In the present example, 2120 true negatives were identified, 

while 380 (and 3 unclassified sequences) were not correctly recognized. Therefore the 

specificity amounts to TN / (FP+TN+NC) = 2120 / (380+2120+3) = 0.847 or 84.7 percent. It 

becomes clear, that the performance values listed in the classification-dialog are in fact the 

sensitivity and the specificity. In the dialog, these values are only labelled performance, 

because one might use many more classes for classification, not just one “true” (here for the 

real splice sites) and one “false” class (here for the false splice sites).  
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6.4. Over-learning 

Over-learning refers to the process that a model extracts too much information from the training 

set during training. It then enhances the recognition of the sequences in the training set, but it 

looses the ability of abstraction, which leads to a decreased recognition of sequences which 

are not part of the training set. Over-learning must be dealt with, especially in neural networks, 

but also in decision trees, where the automatic optimisation of thresholds represents a learning 

process. Over-learning can be detected by the use of cross-verification set during training. In 

the PSSMs, MDDs, or OFMs, pseudocounts (or providing expected frequencies for words 

which are not included in the training set) help to prevent that a model sticks too much to the 

sequences it was built on. 

 

One effective method for preventing over-learning is to divide all the sequences into a training 

set, used for the actual training of the model, and a cross-verification set, used to detect over-

learning. At the beginning of the training process the recognition performance should increase 

for both sets. After a certain point, the recognition performance will still decrease for the training 

set, but increase for the cross-verification set. This indicates over-learning and the training 

process should be stopped at this point (Figure 65).   

 

 

 

 

 

 

 

 

 

 

Figure 65. Scheme of the learning process for a training set (red line) and set for cross verification (blue 

line). After a beginning increase of performance for both datasets, the performance starts to decrease for 

the cross-verification set, while it still increases for the training set. This indicates over-learning. 
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7. FastAFormat - formatting sequences and 
much more 

 

FastAFormat allows various functions for extraction and manipulation, and formatting of 

sequence or text files. For selecting an input file press Open infile. The selected file is displayed 

in the upper text field (for very large files, it might me useful deactivate the option Preview infile, 

which prevents files being displayed). A number of options are accessible on different program 

pages. Select any options in a given sheet and press Process sequence. In the opening file 

dialog select the location where the processed file is saved to. 

 

 

7.1. Functions 

 

Tab-sheet Format FastA: Formatting FastA files 

Get subsequences   Get a subsequence of a given range 

Filter sequences    Filter sequences which are shorter or longer than a given size 

Read sequences from end Create reverse sequences (this is not equal to creating a homologous     

strand) 

Revert sequences to   Creates the homologous strand of a sequence (only for DNA) 
homologous strand 

Convert sequence to    Converts the sequence letters to lower or upper case 

Break lines longer than  Creates line breaks after a given number of chars 

Add sequence number  Adds the number of each sequence in after the ‘>’ character 

 

 

 

Tab-sheet Get FastA:    Creating FastA files 

This page is intended for extracting sequences from unconventional file formats. The use is 

illustrated by the following example: 

 

ID: 1859562Hg6 
Sequence: aatgctagcttcgcgtatcaxgcgacgtgacagtttcccca ag 
          ggctcgatcggatcgatgctagctagctgatcgatcgtagc ta 
          gcgcgtatcgctatcgtagctagctagctgatcgatcgtag ct 
          gcgcgattctctatcgtagtctactatctctactagcatga tc 
          atctgatcgatcgtagctagcgcgataacgatatacaacta  
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Description Enter the text indicating that a line contains a description or ID. (In 
the example enter ‘ID:’) 
 
 

Add ‘>’ character Add ‘>’ to the description if necessary (In the example, the line   
containing the ID does not include the ‘>’ character necessary for  
FastA-files, therefore this option has to be activated) 
 

Add line number    optionally add the number of each sequence to the description 
 
Get sequences staring  Enter the text indicating the begin of a sequence (in the example  
with text       enter ‘Sequence: ‘) 
 
Cut letters on the left/right  Optionally adjust how many letters have to be cut on each side of  
of lines          a line, if a sequence does not cover the whole line (in the example 9  

letters have to cut on the left of each line) 
 

Preview       Press preview to test if sequences are extracted correctly 
 

 

 

Tab-sheet Format text 

 

Range and length 

Get columns     Extract a given column from a text file. Columns can be recognized  
automatically when indicated by tabs or spaces, other wise it has to  
be indicated which character defines a column. 
 

Truncate lines     Cut a given number of characters from the left or right of each line  
 
Get substring Extract a substring from each line 
 

a) Number of chars to copy  Extract a given number of characters from one side of a line 
 
b) Save strings containing  Extracts a subsequence from each line if a line contains a  

given substring. The subsequences can be extracted including  
neighbouring characters (options “from” and “to”). 
 

  c) Save substring from…to… Extract a subsequence from within a line 
 
 
 
 
Additional filters 
        

Save lines if/if not  Save lines only under certain conditions 
 

a) Character found at Save/do not save lines if a given character is found at a given 
    position… position 
     
b) Column equals…  Save/do not save lines if a given text is found in a given column  

 
  c) Line contains    Save/do not save lines if lines contain a given substring 
 

Delete empty lines Do not save empty lines or lines containing only spaces  
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Tab-sheet Misc. text 

 
Replace with Replace any text with another text (optionally case sensitive)  
 
Convert to Convert to upper /lower case 
 
Save no. of lines Save a given number of lines only (from the begin) 
 
Fill lines with character Fill the end of each line with a given character until the length of the  
until length is…  line equals a given number 

 

 

 

Tab-sheet Get random lines 

Get a given number of lines from a file. Lines are selected by random. 
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8. Distribution and download of models from 
the Seqool website 

 

Seqool users are encouraged to publish their own models to the scientific community if they are 

of scientific significance. The Seqool website provides an interface for registered users for 

uploading their models, and for downloading models published by other users (Figure 66). For 

model download login at http://www.biossc.de/seqool/download.html and proceed to the 

download area. Then click on a model name for download and copy the model file in your 

model directory (by default this is the directory “/models”, however you might have changed 

that). Models which contain several submodels (decision trees, backpropagation networks, 

hybrid models) can be downloaded as zip-files. For using these models extract the respective 

files into the model directory. Note that any file downloaded from the internet and consequently 

also models uploaded by other users may possibly be infected with viruses. Although users 

may only upload Seqool models and zip-files, it is recommended to scan recently downloaded 

files, especially zip-files for viruses before use. 

 

 
Figure 66. The download area of the Seqool website provides and interface for down- and uploading 

models which can be used with the Seqool program package. 

 

For uploading a model provide a model name (e.g. the name of the binding factor) and a 

description of the model, which should include the model type (e.g. PSSM), the length of 

model, and other relevant information. If the model has been referred to in a published article, 

you may also include the reference to that article. Finally select the model file to upload the 

model. Simple models which contain only a single file (WMM, PSSM, MDD, profile HMM, 
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RNABind, OFM) may be uploaded directly. Models which include submodels (such as decision 

trees, backpropagation networks, or hybrid models) must first be compressed to a single zip-

file. This zip-file must include the main model file and all necessary submodel files. The zip-file 

may then be uploaded. 

 

 

 

Figure 67. Users may access and delete their own models after clicking on “Access models provided 

by…”. 

 

When preparing a model which contains many submodels for upload, it is recommended to 

modify the model file extensions. Instead of using “xxxxx.xxx” use “xxxxx.xxx_”. E.g. instead of 

using “model.psm” use “model.psm_”. This will prevent that submodels are visible in the 

programs Seqool or SeqoolM. For example, a decision tree may contain many submodels. 

These submodels might never be used alone, i.e. outside the decision tree. But since they are 

located within the model directory (together with the main model, the decision tree) they also 

appear in the model lists of Seqool and SeqoolM, enlarging that list unnecessarily. However, if 

the submodels are named e.g. “model.psm_” instead of “model.psm” then they disappear from 

the model lists of Seqool and SeqoolM. 
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10. Appendix 
 

10.1. File formats used in Seqool 

 

Alignment files  (plain text) are used for building models, such as profiles. The include raw 

sequences: 

 
gagtctgtgttttgtgggtggcaggtggggagacagaagaggagaaga 
ggtgacagctgttttctgcctcaggagaaactgaagccagaatacttg 
ccacacattcttggccttctgcagatcacctttgtagatttcctcgcc 
ctcgcgggcgtgtgcgcgccgcaggctggcggtaaggctggaaaggac 
ctcgcgggcgtgtgcgcgccgcaggctggcggtaaggctggaaaggac 
gtttgtgtatgcttaaaatttaagttcccagtgggccgtattcatcga 
caactgacagattctgccttttaggtacttgaactggcaggaaatgca 
ccggccctcttctctgtcccccagctcagcaacagcacgacggctggc 
ttgattgccctcctcccactgcagatccattacaccggctgctctatg 
cagaactcttt…  

 

 

 

Frequency files (and background frequency files, *.fre) contain frequencies of nucleotides or 

oligonucleotides. (oligo-)nucleotides. The following file contains the typical DNA base 

frequencies of human exons:  

 

0.243001   ← Adenine 

0.27215    ← Cytosine 

0.279091   ← Guanine 

0.205758   ← Thymine 
 

Frequency files list only the frequencies and not the (oligo-) nucleotides to which the 

frequencies refer1. However, frequencies are listed in the following order: A, C, G, T. 

Oligonucleotide frequencies are listed analogously, e.g. for dinucleotides the order is: AA, AC, 

AG, AT, CA, CC, CG, CT. 

 

 

Word reference set files (*.ref) are used to extract over- or under-represented words (e.g. 

oligonucleotides) from a set of sequences in SeqoolM. They contain a list of all words found in 

a reference set, their respective frequency, and the percentage of sequences in which the word 

was found. 
                                                 
1 Frequency files do not include the names of (oligo-) nucleotides because they are ment to be applied in 

Seqool applications only; for creating a table including (oligo-) nucleotides and the respective 

frequencies simply use the function Statistics|Oligonucleotides (see chapter 4.3.3). 



File formats used in Seqool  Appendix 

  95 

 
cga   <- word  
0.004   <- frequency of word 
0.2   <- percentage of sequences in which word was found 
acg 
0.00443103 
0.21 
cgt 
0.00446552 
0.217  
… 
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10.2. Performance of example models 

 

Mode name Model type Sensitivity Specificity TP, FN, 
TN, FP 

Acceptor splice site, human, IC (-15..+2) PSSM / WMM 0.909 0.905 90.9 %, 9.1 %, 
90.5 %, 9.5 % 

Acceptor splice site, human (-36..+24) Neural 
network 0.942 0.914 94.2 %, 5.8 %, 

91.4 %, 8.6 % 

Donor splice site, human (-15..+10) MDD 0.928 0.925 92.8 %, 7.2 %, 
92.5 %, 7.5 % 

Donor splice site, human (-15..+10) Neural 
network 

0.950 0.922 95.0 %, 5.0 % 
92.2 %, 7.8 % 

Table 6. Performance of example models for the recognition of constitutive human splice sites provided 

with Seqool. 

 

 

 


