

V 2.0

A SEQUENCE ANALYSIS TOOL

Program manual

Signal search, pattern recognition, and sequence st atistics

2006

Magnus Wang

 i

© Copyright 2006 Magnus Wang

Heidelberg, Germany, 2006

This publication may be reproduced for educational
use (i.e. for education and research at public
universities) free of charge in any format or medium.
The material must be acknowledged as copyright with
the title and source of the publication specified. All
rights reserved for any uses other than educational,
and especially for commercial uses. For non-
educational uses no part of this publication may be
reproduced, stored in a retrieval system or
transmitted in any form or by means of electronic
mechanical, photocopying recording or otherwise,
without the prior permission in writing of the publisher.

 Contents

 ii

Contents

1. Overview ...1

2. Installation...1

3. Analysis of a single sequences with Seqool ...2

3.1. Basic orientation in Seqool ..2
3.2. Opening files..4
3.3. Sequence composition ..5

3.3.1. Base composition, GC content, nucleotide/dinucleotide frequencies.....................5
3.3.2. Codon usage, codon preference ..6

3.4. Searching for patterns ...8
3.4.1. Text search...8
3.4.2. Stop codon search..11
3.4.3. Searching with pattern recognition models...12

3.5. Additional functions..16
3.5.1. Exporting sequences ..16
3.5.2. Creating subsequences..16

3.6. Customizing Seqool ...17
3.6.1. Graphical output ...17
3.6.2. Configuring Seqool ...17

4. Analysis of multiple sequences with SeqoolM ..18

4.1. Basic orientation in SeqoolM ...18
4.2. Opening files..20
4.3. Sequence composition ..22

4.3.1. Base composition, GC content, nucleotide / dinucleotide frequencies.................22
4.3.2. Codon usage, codon preference ..23
4.3.3. Calculation of oligonucleotide frequencies ...25

4.4. Over- and under-represented words..26
4.4.1. Calculation of over-/under-represented words ...26
4.4.2. Clustering of over-/under-represented words ...28

4.5. Searching for patterns ...34
4.5.1. Text search...34
4.5.2. Searching with pattern recognition models...37

4.6. Customizing SeqoolM ..41
4.6.1. Configuring SeqoolM ..41
4.6.2. Program priority ..41

5. Building pattern recognition models..43

5.1. Profiles (WMM, PSSM)..43
5.1.1. Introduction...43
5.1.2. Increased performance using information content ...44
5.1.3. Adding pseudocounts ...45
5.1.4. Higher order models ...45

 Contents

 iii

5.1.5. Building a WMM/PSSM ..46
5.2. Maximum Dependence Decomposition (MDD)..47

5.2.1. Introduction...47
5.2.2. Example..47
5.2.3. Building an MDD model ..52

5.3. Profile Hidden Markov Models (PHMM) ..53
5.3.1. Introduction...53
5.3.2. Example..53
5.3.3. Building a PHMM..55

5.4. Oligonucleotide-frequency-models (OFM)...57
5.4.1. Introduction...57
5.4.2. Example..58
5.4.3. Adding Pseudocounts...58
5.4.4. Building an OFM...60

5.5. An RNA binding model based on binding energy (RNAbind)61
5.5.1. Introduction...61
5.5.2. Example..61
5.5.3. Building a RNAbind model..63

5.6. Scoring the relative position of a signal: DistM ..64
5.6.1. Introduction...64
5.6.2. Building a DistM model ...65

6. Combining models ..66

6.1. Hybrid Models: Adding or subtracting scores of several models66
6.1.1. Building a hybrid model ..68

6.2. Combining models using decision trees ..69
6.2.1. Introduction...69
6.2.2. Construction of a decision tree ...70
6.2.3. Optimisation of thresholds ..73

6.3. Combining models using neural networks ...76
6.3.1. Introduction...76
6.3.2. Training of backpropagation networks..78
6.3.3. Over-learning..78
6.3.4. Example of a neural network for the human acceptor splice site79

6.4. Over-learning ...87

7. FastAFormat - formatting sequences and much more..88

7.1. Functions ...88

8. Distribution and download of models from the Seqool website ..91

9. References..93

10. Appendix ...94

10.1. File formats used in Seqool..94
10.2. Performance of example models ...96

Seqool Overview

 1

Seqool - A Sequence Analysis Tool

1. Overview

Seqool is a sequence analysis tool designed primarily for searching biological signals in

nucleic acid sequences, providing several methods for pattern analysis and the most common

basic sequence statistics. It comprises methods for text search (IUPAC nucleic acid codes are

supported, such as ‘y’ for pyrimidines), and models for searching biological signals. The

implemented models include profiles/position specific score matrices, profile hidden Markov

models, maximum dependence decomposition models, and oligonucleotide frequency models.

Models can be combined in several ways (e.g. by decision trees or backpropagation networks),

allowing a combination of rather site specific models such as profiles and nucleotide

composition in the proximity of a signal. Additional features include the calculation of sequence

composition (GC, codon usage, nucleotide and oligonucleotide frequencies) and a manipulation

and extraction tool for sequences and text. The major features of Seqool include:

Basic sequence analysis:

- Nucleotide composition, oligo-nucleotide composition
- GC content, codon usage, codon preference

- Over- or under-represented oligo-nucleotides

- Calculation within windows of a given size or for whole sequences, for single sequences
or several sequences together

Signal search:
- Exact text search, text search using IUPAC codes (e.g. “y” for pyrimidines), search of

repeats, stop and start codons, restriction sites

- Profiles (weight matrices/position specific score matrices)
- Profile hidden Markov models

- Maximum dependence decomposition

- Oligo-nucleotide frequency models / models for sequence composition (e.g. GC, codon
usage, codon preference, frequencies of nucleotides or oligo-nucleotides)

- Search for RNA binding motifs (based on binding energy)

Combination of models:

- Decision trees

- Neural networks (Backpropagation networks)
- Model combinations by addition or subtraction of scores (Hybrid models)

- Models for the distance between signals

File format support:

- Support of the most common sequence file formats, such as FastA, GenBank, GCG,
EMBL, and plain sequences (raw).

- A comprehensive sequence and text formation and extraction tool (FastAFormat) which
allows the extraction of sequences from virtually any file format.

Seqool Overview

 2

The Seqool program package consists of two main applications, Seqool for the analysis of

single sequences and SeqoolM for multiple sequences. A variety of independent applications

allow the construction and combination of individual models, which can subsequently be

applied for searching in the main applications:

Main applications:

- Seqool Analysis of single sequences

- SeqoolM Analysis of multiple sequences

For building single signal search models:

- Profile Profiles (weight matrices/position specific score matrices)

- PHMM Profile hidden Markov models

- MDD A combination of several profiles using maximum dependence
 decomposition

- OFM A model assessing the frequency of oligonucleotides, GC, or codon
 usage

- RNAbind A simple model calculating the binding energy to a given target
 oligonucleotide

For combining and the classification single models:

- DistM Calculation of the position of the best hit found by a specific model

- HyM A simple combination of single models, summing up scores of single
models

- BPNet A neural (backpropagation) network for the classification of signals

- DecisionTree A decision tree used for the classification of signals

Sequence manipulation tool:

- FastAFormat Extraction, manipulation, and formatting of sequence or text files

Functions include: Extraction of sequences from text files, conversion of
sequences to FastA format, filtering of sequences according to their length,
creation of homologous or reverse strands, extraction of subsequences /
truncation of sequences, extraction of columns, truncation of lines,
extraction of substrings (optional conditions provided), filtering of lines
(optional conditions provided), replacement of text / case conversion,
extraction of random lines / sequences, etc.

Seqool Installation

 1

2. Installation

Download and installation

Seqool is provided as a Win32 application running on Windows 2000 and Windows XP

systems. The following steps describe the installation of the software. For downloading the

Seqool program package it is necessary to register at the Seqool website. Registration offers

several advantages to users: Besides the free download of the program package, users can

download pattern recognition models and use them with Seqool on their local computers.

Users may also upload their own models, if they are of scientific significance.

1. Access the Seqool download area at http://www.biossc.de/seqool/download.html

(registration/login required).

2. Download the file “Seqool_install.exe”.

3. Install Seqool on your computer by executing the file “Seqool_install.exe”. Follow all

instructions during installation.

Activation of the software

When one of the programs Seqool or SeqoolM is started the first time after installation, an

activation key is needed for activation of the software. The activation key can be obtained from

the Seqool download area at http://www.biossc.de/seqool/download.html.

1. Start Seqool or SeqoolM. The following screen shows up:

2. Copy the registration code to the clipboard.

3. Access the Seqool download area at http://www.biossc.de/seqool/download.html and

select “Activation key”.

4. When you enter the registration code and press “Get activation key” you will receive an e-

mail containing the activation key.

5. Copy the entire activation key and paste it the screen which shows up when Seqool or

SeqoolM is started the first time after installation (see above), and Press OK.

Basic orientation in Seqool Analysis of a single sequences with Seqool

 2

3. Analysis of a single sequences with Seqool

Seqool and SeqoolM are the main application of the Seqool package. These programs

provide a number of sequence analyses and text search functions, and allow to search for

biological patterns with user build models. Most functions are identical in Seqool and SeqoolM

(though SeqoolM provides some additional functions specifically for multiple sequences).

However, the text output and display is optimized for multiple sequences in SeqoolM and for

single sequences in Seqool.

3.1. Basic orientation in Seqool

Seqool provides three main program pages, one for viewing or editing the source file (Source),

one for the graphic output (Graphics) and one for the text output (Text output). A panel for

displaying hits of text or model searches (e.g. binding sites of restriction enzymes) is located at

the top of the graphics page (see Figure 1). Below that panel, additional panels display results

of sequence statistics or any other analysis (e.g. graphics for codon usage, stop codon search,

etc.). When moving the mouse over one of these graphics, the position of the cursor within the

sequence is displayed at the top of the graphics sheet, as well as an excerpt of the sequence at

that position. The exact position of the cursor is indicated by a red mark (see Figure 2).

Graphics can be copied to the clipboard or saved using the context menu. This menu appears

after pressing the right mouse button when the mouse cursor is located above the respective

graph.

The text output page shows results in text-form, if text output was selected in the respective

analysis (Figure 3). For analyses for which a graphical output is not meaningful (e.g. for

calculation of the codon usage of a whole sequence) text output will always be provided, even if

it was not explicitly selected. Tables in the text output sheet are separated by tab-stops in order

to allow to transfer them easily to other computer applications, such as spreadsheet calculation

programs, by copy and paste. The entire text output can be deleted by pressing the Clear

button, or saved to a text file by pressing the button Save as. Word wrap adds line brakes to

long lines.

Basic orientation in Seqool Analysis of a single sequences with Seqool

 3

Figure 1. The Graphics page displays hits of text or model searches, and graphics of several sequence

statistics, such as codon usage, GC content, and others.

Figure 2. Hits of text or model searches are displayed in a panel at the top of the Graphics page. When

moving the mouse over this panel or any other box, an excerpt of the sequence around the position of

the mouse cursor is displayed at the top of the Graphics page.

Figure 3. The Text output page provides detailed information about the results of an analysis.

Graphic
panels

Sequence detail

Hits of text or
model search

Stop codons

Codon usage

GC content

Opening files Analysis of a single sequences with Seqool

 4

3.2. Opening files

Seqool reads FastA, GenBank, EMBL, CGC, and plain sequence files. When a file is opened

the sequence format is automatically determined. The raw sequence is displayed in a small

window and the user is prompted to confirm the file format (or optionally change the sequence

format, Figure 4). Once a file is opened, information about the sequence is displayed at the top

of the window, just below the tool buttons (including the sequence length, the format, the

molecule, and the ID or locus information; see Figure 5). This information can be hidden by

deselecting the menu option View|Show sequence information.

Figure 4. The sequence dialog for confirming or changing the file format of files opened with Seqool.

Figure 5. Information about the name, length, molecule, and format of a sequence is shown at the top of

the window of Seqool.

Sequence composition Analysis of a single sequences with Seqool

 5

3.3. Sequence composition

3.3.1. Base composition, GC content, nucleotide/din ucleotide frequencies

For analysing base composition, nucleotide or dinucleotide composition press the button or

select Statistics|Base composition in the menu. A new window with several options appears

(Figure 6). In this window select first which statistic to calculate, i.e. GC content, nucleotide

frequencies, or dinucleotide frequencies. Then select if the respective statistic shall be

calculated for a sliding “window” or for the whole sequence. If a sliding window is used, the

statistic is calculated for each subsequence of a specific length, e.g. 30 nt (the “window”). After

each calculation, the window is moved to the right by a given amount, e.g. 1 nt (the step), and

the statistic is calculated again for the new window. This procedure is repeated until the window

has slided over the whole sequence. When using a sliding window specify the width of the

window and the amount the window is moved after each calculation.

Optionally select the option Text output for more detailed information, e.g. specific values for

each position of the sequence.

Figure 6. The window for calculating base composition, GC content, and dinucleotides frequencies.

Sequence composition Analysis of a single sequences with Seqool

 6

3.3.2. Codon usage, codon preference

Codon usage measures reflect the probability that a sequence is coding. They are calculated

using codon usage tables, which are available for many organisms. In Seqool, a codon usage

table for humans is used by default after installation, however tables for other species can be

applied too (see below). For analysing codon usage or codon preference press the button

or select Statistics|Codon usage in the menu. The subsequently appearing window shows

several options (Figure 7). First, choose if codon usage or codon preference shall calculated.

Codon usage reflects the probability that a sequence is coding in a given reading frame. Codon

preference takes only the uneven use of synonymous codons into account (Gribskov et al.

1984). Codon usage and codon preference are usually calculated for reading frames, thus the

option Calculate for frames should normally be activated (otherwise values are calculated

regardless of frames). Select if the respective statistic shall be calculated for a moving “window”

or for the whole sequence. If a window is used, the statistic will be calculated for each

subsequences within a sliding window of a given length, e.g. 50 codons (the “window”). After

each calculation the window is moved to the right by a given amount, e.g. 3 codons, and the

statistic is calculated again for the new window. This procedure is repeated until the window

has slided over the entire sequence. When using a sliding window specify the width of the

window and the amount the window is moved after each calculation. Optionally select the

option Text output for more detailed information, e.g. specific values for each position of the

sequence.

Figure 7. Options for calculating codon usage and codon preference.

For changing the currently used codon usage table press the button CU table, which opens a

new window displaying the current codon usage table. This table lists all codons, the frequency

Sequence composition Analysis of a single sequences with Seqool

 7

of each codon (per 1000), the frequency relative to all synonymous codons, and the number of

synonymous codons. Codon usage tables for other species can be loaded by pressing Open

(make sure to provide tables with an identical format as the default table, separating column

with spaces!). A codon usage table can be used as default by pressing Set as default, so that it

is automatically loaded at the next program start. Alternatively, a default codon usage table can

be specified in the Configure-dialog (see menu item File|Configure …).

Codon usage

Codon usage is calculated as the log-likelihood for a sequence to be coding, based a codon usage table

which contains the frequencies of codons in coding regions of a species. Codon usage is calculated as

follows:

∏

∏

=

==
n

i
icodingnot

n

i
icoding

CP

CP
CU

1

1

)(

)(
log

Pcoding(Ci) is the probability (or frequency) for an observed codon Ci to be coding, Pnot coding(Ci) is the

probability of the observed codon not to be coding (i.e. 1/64 = 0.0156 assuming a random codon usage

in non-coding sequences), n is the number of codons in the sequence (in a given reading frame. For

example, the codon usage for the first reading frame of the sequence AGGTAT is calculated as follows

(assuming a human codon usage):

232.0
0156.00156.0

01180.001209.0
log

)tat()agg(

)tat()agg(
log −=

⋅
⋅=

⋅
⋅

=
codingnotcodingnot

codingcoding

PP

PP
CU

Codon preference is the log-likelihood for a sequence to be coding based on the uneven use of

synonymous codons, i.e. different codons coding for one and the same amino acid. This statistic is

calculated as follows:

∏

∏

=

= −
= n

i j

n

i icoding

icoding

m

CP

CP

CP

1

1

1
)(1

)(

log

Pcoding(Ci) is the probability for an observed codon Ci to be used in favour of the its synonymous codons

(used with the cumulative probability 1 - Pcoding(Ci)) when the sequence is coding. mi is the number of

synonymous codons for a given codon j, n is the number of codons in the sequence.

Searching for patterns Analysis of a single sequences with Seqool

 8

3.4. Searching for patterns

3.4.1. Text search

3.4.1.1 Introduction

Text search provides a simple way to search for patterns. Text search in Seqool is facilitated

by the use of IUPAC nucleic acid codes, such as ‘y’ for pyrimidines, or ‘s’ for strong bases (G or

C). For example, searching for the string ‘yyyy’ will identify most polypyrimidines. Seqool

implements two methods for text search. One method uses a suffix tree, which also allows to

identify repeated elements, the other methods uses the standard Knuth-Morris-Pratt search

algorithm. Both methods perform equally well in most cases. However, when searching for

many signals, the suffix tree method may be more effective.

3.4.1.2 Basic text search

Open the text search dialog by pressing the button or by selecting Search|Text search in

the menu. The search window provides a number of option (Figure 8). The easiest way to

search for a subsequence is to enter the search string, i.e. the subsequence, in the left column

of the table (optionally a description can be provided in the right column for each search string;

this description will appear in the graphical display of the hits, see Figure 9). If IUPAC codes

are used, make sure to activate the option Use IUPAC nucleic acid codes. A list of all IUPAC

nucleic acid codes can be displayed by pressing on the blue arrows behind the check box Use

IUPAC nucleic acid codes. Start the search by pressing the Search button. Subsequently hits

are displayed in the hit panel at the top of the graphics page.

Figure 8. The text search dialog of Seqool supports IUPAC nucleic acid codes and a search for repeats.

Searching for patterns Analysis of a single sequences with Seqool

 9

Figure 9. Hits are displayed in the hits panel at the top of the graphics page. When moving the mouse

over a hit, a tool tip shows displays additional information of each hit (the description of the search

pattern and the position of the hit).

3.4.1.3 Types – Frequently used / alternative search-patterns

Introduction

Frequently, it will be necessary to search for the same patterns routinely. For such cases

search types can be created. Types can be selected rapidly in the text search window and they

may contain more than one search string. For example, the type ‘Stop codon’ allows to search

for all stop codons and includes all three stop codons as search strings, i.e. TAA, TGA, and

TAG. Additionally, a specific colour can be assigned to each type for displaying hits (e.g. the

colour red for the type ‘Stop codon’).

Searching with types

For searching with a type open the text search window by pressing the button or by selec-

ting Search|Text search in the menu. Then select a type in the Types box on the left below the

main search table. Several types are already defined after installation of Seqool. Select for

example the type ‘EcoRI’ and press the button Select type. Subsequently a new entry is

automatically added to the search table: #ecori, with the description ‘EcoRI’. Pressing the

Search button will now search for all restriction sites of the enzyme EcoRI.

Creating new types

Search types are created by pressing the button Define type, which opens a new window

(Figure 10). The name of a new type, e.g. ‘Stop codon’, is entered at the top of this window (in

the box Type name). The search patterns are entered in the main table (for the three stop

codons the search patterns are ‘taa’, ‘tag’, and ‘tga’). Optionally a colour can be selected for

displaying hits. For example, select the colour red in the Type colour box in order to display

stop codons red.

A final option determines if hits of the current type will be displayed only if they occur in a given

reading frame (which is appropriate for stop codons) or if they shall always be displayed (as in

the case of restriction enzymes), regardless of the reading frame (if hits are displayed for the

Searching for patterns Analysis of a single sequences with Seqool

 10

respective reading frame only then hits can be displayed for each frame separately, see option

Frame at the top of the Graphics result sheet). Finally, a type is created by pressing the Add

type button (other types can be deleted by selecting a respective type and pressing the Delete

type button). It is important to note that new types are not save d by default. For making

types accessible at the next program start types ha ve to be saved in a type file. Type files

include a collection of types. To save changes in a type file after the creation of a new type

press Save type file. For opening a type file press Open type file. When starting Seqool a type

file is loaded by default. This default file can be selected in the menu File|Configure).

Figure 10. The dialog for defining search types. Search types are used for searching routinely. Search

types may include several search patterns, as in this example for stop codons.

3.4.1.4 Searching for repeats

Before searching for repeated subsequences make sure to apply suffix tree search. Activate

the option Find repeats of length and specify the minimum and maximum length of the repeats

to find. Finally press the Search button. Repeats are always shown in grey colour in the hit

panel of the graphics page. The exact sequence of repeats is shown as a tool tip when the

mouse cursor is moved over the respective shape in the hit panel.

3.4.1.5 Additional options

Several options in the text search window allow to customize the graphical output and the text

output:

Searching for patterns Analysis of a single sequences with Seqool

 11

Add matches to sequence graph - Usually previous hits displayed in the hit box are erased

 before displaying new results searching. Activation of this

 option prevents previous hits to be erased.

Text output - Hit positions are also printed in the Text output page.

Display hits only for selected frames - Hits can be showed only for a specific frame, which is

 selected at the top of the Graphics page. This option

 is useful e.g. for stop codons, which are frame dependent.

Shape height - Define the height of the shape for depicting a hit in pixels.

Default shape colour - Define the colour of the shape for depicting a hit. This

 option does not apply to search types and repeats.

3.4.2. Stop codon search

 Seqool provides a convenient additional option for displaying stop codons in all three reading

frames by pressing the button or by selecting Search|Search for stop codons in the

menu. In the following dialog (Figure 11) it can be specified if the stop codons of any frame are

displayed in the same colour (red), or if different colours are used, which correspond to those

colours used in codon usage graphs (this option facilitates an easier identification of open

reading frames or exons). Additionally the height of graphically displayed stop codons can be

defined. For an example of the stop codon graphic see Figure 12.

Figure 11. The dialog for stop codon search.

Figure 12. Example of the graphical display of stop codons. Stop codons are displayed for each reading

frame.

Searching for patterns Analysis of a single sequences with Seqool

 12

3.4.3. Searching with pattern recognition models

3.4.3.1 Introduction

The Seqool program package provides separate modules for creating a variety of pattern

recognition models, such as position specific score matrices (weight matrices), profile hidden

Markov models, and models for combining models, such as decision trees or neural networks.

Modules for building pattern recognition are started by selecting the respective component in

the Tools menu or by using the respective tool button (Figure 13). All models can be used for

searching in Seqool and SeqoolM.

Figure 13. Tool buttons for starting program components for signal-recognition models.

3.4.3.2 Basic search

Pressing the button (or selecting Search|Model search in the menu) opens the model

search dialog (Figure 14). When searching with a specific model, only models contained in the

default model directory are listed. This default directory can be changed permanently in the

main menu (menu File|Configure…) or only temporally (until exiting the program) by pressing

the Model directory button. If a new model was saved in the model directory while the model

search dialog was still open it may not be listed in the list of models. In this case press to

actualize the list of available models.

For selecting a model, choose one of the models listed in the Select model box and press the

button Add model. Additional information about the model is displayed below the Select model

box, such as the model type, the models name, the description, and the file name (see Figure

14). Press Search for starting the model search.

Searching for patterns Analysis of a single sequences with Seqool

 13

Figure 14. The model search dialog. Pre-processing models can be added before search with the main

model.

3.4.3.3 Adding a pre-processing model

I some cases it might be useful to add a pre-processing model before searching with the main

model. For example, when searching for acceptor splice sites, it will be faster to search for all

AG dinucleotides first and then to apply a more complex model only to those sites, where an

AG dinucleotide was found. This may significantly reduce the overall time for searching. A pre-

processing model is added by activating the check box Preprocess and by selecting a model in

the respective Select model box. Confirm a selected model by pressing the button Select

model. Make sure that the search position of the pre-proce ssing must match the search

position of the main model . For example, when the main model analyses a region between –

10 and +10 nt relative to the putative signal, then the pre-processing model must match this

region, i.e. the pre-processing model must also start at the position –10 nt (but it does not

necessarily end at the position +10 nt). Hybrid models (see chapter 6.1) can be used to adjust

the range of a pre-processing model. Although the component Hybrid models is intended for

Searching for patterns Analysis of a single sequences with Seqool

 14

combining several models, it provides an easy method for shifting the position of a model (see

figure Figure 15). For details refer to chapter 6.1, which provides a detailed description of

Hybrid models.

Figure 15. a) A pre-processing model must match the range of the main model. b) The component

Hybrid models allows to relocate a pre-processing model so that it matches the range of the main model.

In this example the pre-processing recognizes the AG dinucleotides. In order to match the search

position of this model to the search position of the main model a hybrid model (including the model for

AG) is used to shift the pre-processing model to the left back to the correct search position.

When using a pre-processing model, the score threshold may be changed by the user in order

to increase or decrease the specificity. The default threshold shown when selecting a model

corresponds to the original value given in a model.

As for the main model list before, the model directory can be changed temporally by pressing

the Model directory button and the list of models can also be actualised by pressing .

Putative signal

Main search model

pre-processing model

Model start

Putative signal
Position: 0

pre-processing model
(Hybrid model including a model for AG)
Search position for the model AG: +19

Model start
Position: -19

Main search model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Hybrid model AG

a

b

Searching for patterns Analysis of a single sequences with Seqool

 15

3.4.3.4 Additional options

Several options allow to customize the graphical of text based output:

Add matches to sequence - Usually previous hits displayed in the hit box are erased

 before displaying new results searching. Activation of this

 option prevents previous hits to be erased.

Display colour intensity according - The colour of graphically displayed hits is modified depen-

to score/confidence ding on the score of the hit (or confidence in the case of

 neural networks). A dark colour indicates a high score,

 while a light colour indicates a low score

Display hits only for selected frames - Hits can be showed only for a specific frame, which can be

 chosen at the top of the graphics result sheet. This option

 is useful e.g. for stop codons, which are frame dependent.

Text output - Hit positions are also printed in the text output sheet.

Shape height - Define the height of the shape for depicting a hit in pixels.

Additional functions Analysis of a single sequences with Seqool

 16

3.5. Additional functions

3.5.1. Exporting sequences

Sequences can be converted to the most common sequence formats using the menu option

File|Export sequence… . Available sequence formats include FastA, GenBank, EMBL, CGC,

and plain sequence files (raw sequence files). Select the desired format in the Sequence format

box and press OK to save.

3.5.2. Creating subsequences

For large sequence the Sequence display in Seqool is compressed in order to allow to display

the whole sequence within one panel. It may therefore be useful to copy a subsequence, e.g.

the region of a putative signal, in a new window in order to study it in more detail.

Subsequences are selected by moving the mouse across the region of the sequence which

shall be copied (in the hits panel at the top of the graphics page) while holding down the left

mouse button. A blue line below the hits-box indicates the selection. After releasing the mouse

button a window opens which allows to adjust the selection and to copy the respective

subsequence into a new window (the latter option is also available in the menu: Edit|Copy

selection into new file).

Figure 16. A subsequence can be marked (blue line) by moving the mouse over a part of the sequence

while holding down the left mouse button.

Customizing Seqool Analysis of a single sequences with Seqool

 17

3.6. Customizing Seqool

3.6.1. Graphical output

The panels containing the graphical output of an analysis can be deleted by pressing the small

 at the top left corner (Figure 17) of the panels. Graphics can be rearranged using the small

flash buttons � or � on the top and bottom left side of the graphics (Figure 17). These buttons

allow to switch a graphic panel upwards or downwards, respectively.

Figure 17. Buttons for closing and moving graphic panels.

3.6.2. Configuring Seqool

Basic settings can be customized using the menu option File|Configure… . All options listed in

the configure window (Figure 18) are permanent, i.e. the respective setting is loaded by default

every time the program is started. The default type file refers to the file containing all types

which can be used for text search (see chapter Searching with types). The codon usage file

defines which file is used for the calculation of codon usage of codon preference indices. The

model directory determines which folder is used for searching with pattern recognition models

(when using a model comprising several submodels please remember that all sub-models must

be provided in the same directory as the main model). Finally, it can be selected how many

recently opened files are displayed in the file menu.

Figure 18. The dialog for customizing basic settings of Seqool.

Basic orientation in SeqoolM Analysis of multiple sequences with SeqoolM

 18

4. Analysis of multiple sequences with
SeqoolM

SeqoolM provides almost the same functionality as Seqool, such as codon usage, GC content,

or text and pattern search. However, the display of results is optimised for the analysis of

multiple sequences. Additionally, SeqoolM offers analyses which are more relevant for multiple

sequences, such as the analysis of over- or under-represented words (i.e. short

subsequences), and it provides several filtering options, which can be used for extracting only

sequences meeting certain criteria (e.g. a sequences with a GC content of at least 0.5).

4.1. Basic orientation in SeqoolM

SeqoolM provides two main tab sheets, one for the graphical output (Graphics) and one for the

text output (Text output). The graphical results tab sheet consists of two parts: A hit-panel for

displaying hits of text or model searches (and also searches for over- or under-represented

words, see Figure 19) at the top, and below a box for displaying sequence statistics, e.g. codon

usage or GC content. When moving the mouse over one of the graphics, the respective

position in the sequence is displayed (see Position in Figure 19), as well as the number of

sequences having the respective length (since a dataset may contain sequences of different

length, the right side (5’-end) of the sequences may be represented by a lower number of

sequences than the left (3’-end) side). Similarly, in the hit-box for text or model search grey

lines indicate the shortest and the longest sequences (Figure 20).

Graphics can be copied or saved by pressing the right mouse button above the respective

graph. The context menu provides options for saving a graph or for copying it to the clipboard.

The text output sheet contains all results in text-form, if text output was selected in the

respective analysis (Figure 21). For some analyses text output will always be provided (e.g. for

calculation of the codon usage of all sequences). Tables in the text output sheet are separated

by tab-stops in order to allow to transfer them easily to other computer applications by copy and

paste. All text output can be deleted using the Clear button, or saved to a text file using the

button Save as.

Basic orientation in SeqoolM Analysis of multiple sequences with SeqoolM

 19

Figure 19. The Graphics page displaying hits of text searches, model searches, or searches for over- or

under-represented words (top), and graphics for sequence statistics, such as codon usage, GC content,

and others (below).

Figure 20. In the hit panel for text or model searches, grey lines indicate the length of the shortest and

longest sequences in the data set.

Figure 21. The Text output page provides detailed information (optional) about the results of an analysis.

Hits of text or
model search
(or search for
over-/under-
represented
words)

Graphics for
various
sequence
statistics

Opening files Analysis of multiple sequences with SeqoolM

 20

4.2. Opening files

FastA files are opened using the menu item File|Open or by pressing the file open button.

Before loading a file, FastA files are displayed in a separate window for verification. If files have

been correctly read, press OK. Figure 22 shows an example of the verification window for the

following three sequences:

> Sequence A
agggtaggcaggtggctcctctagccccctccacccatcacaggccccaat atgattctcttcctggcaggtgacgactgacttgcggcagaag
gcagctggagagctgctcccaaaaaagactgatccccagcctctcccttcc ttctttgcagtaagaacctcacatggcgggacatgcaacacct
tccacccatcacaggccccaatatgattctcttcctggcaggtgacgactg acttgcggcagaagtgcacggagtctcacacgggcacctgcag
aaaaagactgatccccagcctctcccttccttctttgcagtaagaacctca catggcgggacatgcaacacctggtggtacagacctcgattgc
agtaagaacctcacatggcgggac
> Sequence B
gcccttagggcagctggagagctgctcccaaaaaagactgatccccagcct ctcccttccttctttgcagtaagaacctcacatggcgggacat
gcagctggagagctgctcccaaaaaagactgatccccagcctctcccttcc ttctttgcagtaagaacctcacatggcgggacatgcaacacct
ggtggtacagacctcgatcgctaaactggagagctgctcccaaaaaagact cctaagaacctcacatggcgggacatgctaagaacctcacatg
gcgggacatgcgatccccagcctctcccttccttctttgcagtacacatgg cgggacatgcaacacctggtggtacagacctcgactgctgctg
tggtacagacctcgacaaccacgcaccaccactacttggttgtgagggcag ctggagggagctgctcccaaaaaagtgtgtgactgatccccag
cctctcccttccttctttgcagtaaga
> Sequence C
gctcgtatatctcgtagctgactgactcgcgcgcgctctccgtctactatc tactatcgctgatgctgctctatatctcgatcgatgctagcta
actacgtacgtagctagctatcgatcgtgattatcatgctagctagcactc tcatgctgctagctccccccccccccctgatgctgctgtgatg
acctctctatcgctaatatcgtracgtagatctacgactagatatatatcg ctcagtctagctacactctcgatcgatcgcgcgctatctcgct
acatgctgagtgtagctctcgatgctgatcgatgctagctgactgatcgat cgctctctcccccctatatctcgatctctctctccccccccca
acccggctagtcgtctacatctctagtggcg

Figure 22. The open dialog for verification of FastA files opened with SeqoolM.

In the window for verification of the opened sequences the option Display sequences on a

separate page allows to show all single sequences on a separate page (see Figure 22). When

this option is activated a new page apart from the Graphics and the Text output pages will show

a list of all sequences.

Opening files Analysis of multiple sequences with SeqoolM

 21

After opening a multiple sequence file information about the sequences is displayed at the top

of the window (including the number of sequences in the file, the molecule, and the length of

the shortest and the longest sequence; see Figure 23). This information can be hidden by

deselecting the menu option View|Show sequence information.

Figure 23. Information about the name, number of sequences, molecule, and length of the shortest and

longest sequence is shown at the top of the window of SeqoolM.

Sequence composition Analysis of multiple sequences with SeqoolM

 22

4.3. Sequence composition

4.3.1. Base composition, GC content, nucleotide / d inucleotide
frequencies

For analysing base composition, GC content, nucleotide or dinucleotide composition press the

button or select Statistics|Base composition in the menu. The following window offers

various options (Figure 24). First, choose to calculate either GC content, nucleotide

frequencies, or dinucleotide frequencies. Select if the respective statistic shall be calculated for

a moving “window” or if a single value shall be calculated for a given range of the sequences.

If a window is used, the statistic will be calculated for each subsequences within a sliding

window of a given length, e.g. 30 nt (the “window”). After each calculation the window is moved

to the right by a given amount, e.g. 1 nt, and the statistic is calculated again for the new

window. This procedure is repeated until the window has slided over the entire sequence.

When using a sliding window specify the width of the window and the amount by which the

window is moved after each calculation. Optionally select the option “text output” for more

detailed information, e.g. the values for each position of the sequence.

Figure 24. The dialog box with several options for calculating base composition, nucleotide and

dinucleotide composition, and GC content.

Sequence composition Analysis of multiple sequences with SeqoolM

 23

For calculating a statistic only for a given range specify the range (settings from and to;

entering ‘0’ in the last field will calculate the statistic until the end of each sequence). Those

sequences with a value below or above a certain threshold can be saved in a separate file

(FastA format). This allows to split a dataset, for example according to GC content (see

example in Figure 25).

Figure 25. Example for extracting sequences with a GC above 0.5. Sequences are saved in FastA

formatted file.

4.3.2. Codon usage, codon preference

Codon usage measures reflect the probability that a sequence is coding. They are calculated

using codon usage tables, which are available for many organisms. In SeqoolM, a codon

usage table for humans is used by default after installation, however, tables for other species

can be used as well (see below). For analysing codon usage or codon preference press the

button or select Statistics|Codon usage in the menu. A dialog box opens showing several

options (Figure 26): First, select either codon usage or codon preference. Codon usage reflects

the probability that a sequence is coding in a given reading frame. Codon preference takes only

Sequence composition Analysis of multiple sequences with SeqoolM

 24

uneven usage of synonymous codons into account (Gribskov et al. 1984). For calculations of

codon usage and codon preference see chapter 3.3.2. Usually, codon usage or preference is

calculated for all three reading frames, hence the option Calculate for frames should normally

be activated. Select if the respective statistic is calculated for a moving “window” or for all

sequence. If the a window is used, the statistic is calculated for subsequences of a given

length, e.g. 50 codons (the “window”). After that, the window is moved to the right by a given

amount, e.g. 1 codon, and the statistic is calculated again for the new window. This procedure

is repeated until the window has slided over the whole range. When using a sliding window

specify the width of the window and the amount the window is moved after each calculation.

Optionally select the option Text output for more detailed information, e.g. for specific values for

each position of the sequence.

Figure 26. The dialog for calculating codon usage.

The currently used codon usage table can be chosen by pressing the CU table button, which

shows a new window containing the current codon usage table. This table lists the codons, the

frequency of each codon (per 1000), the frequency relative to synonymous codons, and the

number of synonymous codons. Other tables can be loaded by pressing Open (make sure to

provide tables with an identical format!). A codon usage table can be used as default by

pressing Set as default. The default codon usage file is always loaded at the start of the

program. Alternatively, a codon usage table can be set as default in the Configure-dialog (see

menu File|Configure|Settings …).

Sequence composition Analysis of multiple sequences with SeqoolM

 25

4.3.3. Calculation of oligonucleotide frequencies

For calculating oligonucleotide frequencies press the button or select Statistics|Oligo-

nucleotides in the menu. In the window which appears (Figure 27) select the length of the

oligonucleotides for which frequencies shall be calculated and press OK. In some cases

(especially for long oligonucleotides and datasets containing only few sequences) some

oligonucleotides may not be found, i.e. their frequency in the sample is zero. However, in reality

these oligonucleotides may in fact occur, though rarely. Oligonucleotides remain usually

undetected when a sequence set contains too few sequences. Frequencies with a value of zero

may cause problems when using them for later calculations, e.g. for a recognition model

(provoking e.g. division by zero errors). To avoid this problem, frequencies equal to zero can be

substituted by a fixed, user defined value (option For missing oligonucleotides use a frequency

of…). For estimating the expected frequency of an oligonucleotide which was not observed in a

dataset, it might help to consider the probability to observe the oligonucleotide by chance

(assuming that each nucleotide occurs with the same frequency). For example, the expected

frequency for a trinucleotide is 1/4³ = 1/64 = 0.0156. For a hexanucleotides the frequency of

each hexanucleotide is 1/46 = 1/4096 = 0.000244 (evidently, in a dataset containing 4000

oligonucleotides of length 6 nt it is impossible to find all 4096 hexanucleotides).

Oligonucleotide frequencies can either be shown in the Text output page (when the option Text

output is activated), or they can be saved to a separate file (option Save frequencies in a file).

This option creates a Seqool frequency file (see Appendix 10.1).

Figure 27. The dialog for the calculation of oligonucleotide frequencies.

Over- and under-represented words Analysis of multiple sequences with SeqoolM

 26

4.4. Over- and under-represented words

The frequency of short subsequences of only a few nucleotides, so called words, can be

compared to the frequency which would be expected given a certain sequence composition. As

a simple example consider trinucleotides (words with a length of 3 nt). In non-coding regions

with an equal probability of each trinucleotide, a given trinucleotide is expected to occur with a

frequency of 1/64. Trinucleotides occurring more frequently than 1/64 = 0.0156 are over-

represented, while others occurring more rarely are under-represented. Over- or under-

represented words (in this case the trinucleotides) may indicate e.g. regulatory sequences.

Figure 29. The dialog for calculation of over- and under-represented words (short subsequences).

4.4.1. Calculation of over-/under-represented words

For determining over- or under-represented words press the button or select Statistics|Find

over- and under-represented words. The next dialog provides several options (Figure 29): First

select the length of the words (short subsequences) which shall be analysed, e.g. select a

length of 3 nt for analysing trinucleotides. Then specify how to calculate the expected word

frequencies. In the simplest case, all words are expected to occur at random, each with an

equal probability (option Assume an equal probability for each word, e.g. a probability of 1/64 is

expected for trinucleotides). Alternatively, a nucleotide distribution can be calculated from the

existing sequences, and the expected occurrence or words can be estimated from this

distribution (option Calculate nucleotide frequencies from sequences). Since this method

provides only a very approximate calculation the option Calculate word probabilities from

reference set should be used preferentially. This method retrieves the expected probability for

each word from a separate file, the reference set. Such a reference set contains, for example, a

Over- and under-represented words Analysis of multiple sequences with SeqoolM

 27

distribution of trinucleotides in coding DNA or hexamer-frequencies in exons (e.g. for identifying

over-represented words, i.e. putative regulatory elements, in exons). See below for a

description of how to create reference set files. Further options are described later.

After pressing the button OK, scores are calculated for all words and for all positions of the

sequences. The frequency of each word at each position is shown in Figure 30. The respective

image can be copied or by pressing the right mouse button above the image (follow the option

in the appearing context menu). Specific words can be selected in the box Display freq. of

word. The text output (in the Text output tab-sheet) provides additional information, such as the

score of each word, the number of observed and expected hits, etc..

Figure 30. Graphical output of the calculation of over- or under-represented words.

Additional options in the dialog shown in Figure 29 allow to sort or filter certain words. Usually

words are sorted for their score (option Sort words for score), i.e. over-represented words (with

a positive score) appear at the top of the output list and under-represented words appear at the

end of that list. Alternatively, words can be sorted according to the number of sequences in

which a word was found (option Sort words for sequence hits). Words can be filtered according

to a certain score threshold (option Show only words with a min. score of) or to a minimum

number of sequences in which they were found (option Show only words found in no. of seqs.).

Finally the number of words can be limited to a given number (e.g. show only the ten words

with the highest score; option Number of words to display).

A few options allow to customize the graphical output and the text-output: Adjust scale

automatically adjust the scale of the graphic output according to the observed frequencies. If

this option is deactivated, the y-axis shows the full range from 0.0 to 1.0. The option Adjust

scale for number of sequences at current position causes the graphic to display the frequencies

of a word relative to the number of sequences in the dataset which cover the position where a

word was found. This option is useful if a dataset contains sequences with varying lengths. For

Over- and under-represented words Analysis of multiple sequences with SeqoolM

 28

example, consider a dataset contains three sequences of varying length, e.g. 40 nt, 60 nt and

100 nt. If a given word is found at the 50th position in one of these three sequences then the

absolute frequency would be 0.333. However, only two sequences provide information about

the position 50, hence the relative frequency is 0.500 rather than 0.333.

Further options include the option Display hits at each position, which allows to show the

number of hits at each position of the sequences in the graphical output, and the option Text

output, which allows to display a table containing the number of observed and expected hits for

each word, the number of sequences in which a word was found, the score, and the number of

hits at each position in the sequences in the Text output page.

Creating reference set files

Reference sets files are also created by calculation of over-/under-represented words: Press the button

or select Statistics|Find over- and under-represented words. In the dialog which opens select the

length of the word and choose the option Assume an equal probability for each word and press OK for

starting the search. When the search is complete, press the button at the top of the

Graphics page to save the reference set (a short message will appear describing the use of a reference

set).

4.4.2. Clustering of over-/under-represented words

Over- or under-represented words may include regulatory or otherwise biologically significant

signals (e.g. the binding site of a protein). The composition of such elements may be very

variable, though some similarities are usually shared between the different sequences

corresponding to the signal. The clustering of over-represented sequences provides a method

for identifying groups of similar sequences which may correspond to a biological signal. These

groups (clusters) of similar sequences can be used for building a recognition model for a signal,

e.g. a profiles or weight matrices (see chapter 5.1). The applied clustering algorithm is based

on sequences identity as a measure of genetic distance. Clusters are produced using a

neighbour joining algorithm.

Identification of over-represented words

As an example, a dataset containing the terminal 70 nt of human introns will be used. For these

sequences, over-represented words of length 6nt, i.e. hexamers, are identified assuming an

equal probability for each word. The calculation of over-represented words shows that the

hexamer TTTTTT is the most frequent word, followed by many more pyrimidine-rich words (as

might have been expected from the composition of the polypyrimidine tract which is situated at

Over- and under-represented words Analysis of multiple sequences with SeqoolM

 29

the end of introns). A graph showing the distribution of the hexamer TTTTTT shows a marked

concentration at the end of introns, the position of the polypyrimine tract (Figure 31). In this

example, however, the polypyrimidine tract is not considered. Instead another hexamer will be

analysed: CTGACC. This word shows a high concentration just before the location of the

polypyrimidine tract. It closely resembles the branch site (YTNAY, with Y being either C or T, N

being any nucleotide). In the following it will be demonstrated, using the branch site as an

example, how the clustering of over-represented words is applied to construct clusters of

similar sequences and how weight matrices are produced from these clusters.

Figure 31. Occurrence of the hexamer TTTTTT at the end of human introns (top) and of the hexamer

CTGACC (bottom), which resembles the branch point.

Analysis of the region in which most over-represent ed words are found

The previous analysis showed that the region where most CTGACC hexamers were found

contains also many words which correspond to the polypyrimidine tract. In order to exclude

high scoring words which represent the polypyrimidine tract, words will be calculated only for a

very narrow range between –35 nt and –15 nt (range 35 to 55 in Figure 31) upstream of the

acceptor splice site. The word CTGACC was most frequently observed in this region. After

calculating over- and under-represented hexamers for this region (this analysis is shown in

detail here, for details about the calculation of over-represented words refer to the previous

chapter), words are clustered by pressing the button or selecting Statistics|Cluster over-

/under-represented words in the menu. The following dialog (Figure 32) offers several options:

The Number of words to cluster allows to limit the clustering to the top ranking words only

(according to the word list created for the calculation of over- and under represented words). In

this example clustering will be conducted for the top 500 words, i.e. the 500 highest-scoring

Over- and under-represented words Analysis of multiple sequences with SeqoolM

 30

words. The branch limit determines at which “distance” (here: sequence similarity), words are

clustered into one cluster. A low branch limit will cluster only very similar words, while a large

branch limit will create clusters with less similar words. For a first analysis a low branch limit

should be used, which may be increased until the clusters show a reasonable composition. In

this example a branch limit of 0.075 will be used. As mentioned before, the branch limit refers

to the “distance” or similarity between words. Usually sequence identity will be used. This

means that the “distance” refers to the fraction of nucleotides in a word which are not identical

(other distances are also provided, but sequence identity will give appropriate results in most

cases).

Detailed information about the neighbour joining tree on which the clustering is based can be

displayed optionally (option: Display tree information), and a matrix of the distances between all

pairs of words can be shown (option: Display distance matrix). Usually many clusters are

formed during an analysis, therefore it is advisable to filter only the “best” clusters, e.g. those

including the highest number of words (option: Display clusters containing min. word number

of), those with a minimum cumulative score (i.e. the sum of the scores of all words; option:

Display clusters with a min. cumulative score of), or clusters with a given minimum number of

cumulative sequence hits (i.e. the sum of the sequence hits of each word; option: Display

clusters with min. cum. sequence hits of). In this example, only clusters with a minimum

cumulative number of 3000 sequence hits shall be displayed. Finally, the words are clustered

by pressing OK.

Figure 32. The dialog for clustering over- or under-represented words (short subsequences) for the

calculation of consensus trees for putative signals.

Over- and under-represented words Analysis of multiple sequences with SeqoolM

 31

Clusters and weight matrices

The output of this analysis indicates a total number of 77 clusters (Figure 33). Of these, only 6

clusters show at least 3000 cumulative sequence hits (i.e. the sum of the sequence hits of all

words exceed 3000; however, the real number of hits of a cluster may be smaller than this

number, because two words of one and the same cluster may be found in one and the same

sequence).

Branch lengths of UPGMA tree of over-represented wo rds:

Min. branch length: 0,0000
Max. branch length: 0,1667
Mean branch length: 0,0339

77 clusters found. Displaying clusters containing w ords found in at least 3000 sequences:

Figure 33. General information displayed for the clustering of over-/under-represented words.

Two of these 6 clusters two are displayed in Figure 34. These clusters resemble the human

branch site YTNA. The words of both clusters are found in more than 3000 of all 10000

sequences, with a cumulative score of 13.1 and 16.1 respectively (Figure 34). For each cluster

a simple weight matrix and a consensus sequence is displayed. The most conserved positions

are marked with asterisks (****). Since the given weight matrices are based only on the words

included in the clusters, the terminal positions of the matrices are represented only by very few

words. For example, in cluster 5 the position 8 is only covered by 4 words, each showing

another nucleotide. Consequently, the nucleotide frequencies at this position is 0.25 for each

nucleotide. Evidently, 4 words represent a very small sample size. More accurate weight

matrices can be calculated using the option Display all hits for each cluster (see Figure 32),

which was not mentioned previously. When this option is activated hits are searched for each

word in the cluster within the whole dataset. The resulting list of hits can be used as an

alignment file for building a profile or weight matrix model (see chapter 5.1, copy all hits in a

separate file and use this file as an alignment file for building the model).

Profiles for all six clusters observed in this example are shown in Figure 35. Four of these

clusters seem to relate to the polypyrimidine tract since they show a high fraction of the

nucleotides C and T (clusters 1, 3, 4 and 6). But the other two clusters, especially cluster 5,

show a high similarity to the branch site YTNA. A profile for both combined clusters is displayed

in Figure 36, as well as a profile of the human branch site from Senapathy et al. (1990) for

comparison.

Over- and under-represented words Analysis of multiple sequences with SeqoolM

 32

Cluster 2 (30 words):
--ttataa-
--aaataa-
---aataat
---aataaa
--taataa-
--taatgt-
-ttaatg--
-ctaatg--
tctaat---
--taatga-
-ataata--
-ttaata--
--taatat-
-taaatt--
-taaata--
ataaat---
--taattg-
--taattt-
-ataatt--
-ttaatt--
...
...

Cumulative score: 13,118; cumulative sequence hits: 3205

Profile of cluster 2:
Pos 1 2 3 4 5 6 7 8 9
a 0,57 0,17 0,22 0,77 0,97 0,00 0,48 0,67 0,67
c 0,14 0,11 0,00 0,00 0,00 0,00 0,00 0,00 0,00
g 0,00 0,00 0,00 0,00 0,00 0,00 0,17 0,08 0,00
t 0,29 0,72 0,78 0,23 0,03 1,00 0,35 0,25 0,33
 **** **** ****
Cons: h h w w w t d d w

Cluster 5 (29 words):
-agtgac--
--gtgact-
-tgtgac--
---tgacca
--gtgacc-
---tgactg
-actgag--
---tgacct
-actgac--
--ctgacc-
-cctgac--
---tgaccc
-tctgac--
-gctgac--
--ctgact-
tgctga---
--ctgaca-
tcctga---
--ctgatt-
--ctgatg-
ggctga---
...
...

Cumulative score: 16,151; cumulative sequence hits: 4373

Profile of cluster 5:
Pos 1 2 3 4 5 6 7 8 9
a 0,17 0,20 0,00 0,00 0,00 1,00 0,00 0,07 0,25
c 0,17 0,33 0,84 0,00 0,00 0,00 0,65 0,43 0,25
g 0,33 0,27 0,16 0,00 1,00 0,00 0,26 0,14 0,25
t 0,33 0,20 0,00 1,00 0,00 0,00 0,09 0,36 0,25
 **** **** ****
Cons: n n s t g a b n n

Figure 34. Two clusters which may represent the branch site YTNA upstream of human acceptor splice

sites. Only the first words of the clusters are displayed here for demonstration.

Over- and under-represented words Analysis of multiple sequences with SeqoolM

 33

Figure 35. Profiles for six clusters of over-represented words.

Figure 36. Profiles of the human branch site (left, according to Senapathy et al. 1990) and a calculated

from the combined clusters 2 and 5.

Searching for patterns Analysis of multiple sequences with SeqoolM

 34

4.5. Searching for patterns

4.5.1. Text search

Text search provides a simple way to search for patterns. In Seqool and SeqoolM text search

is facilitated by the use of IUPAC nucleic acid codes, such as ‘y’ for pyrimidines, or ‘s’ for strong

bases (G or C). For example searching for the string ‘yyyy’ provides an easy way to identify

most polypyrimidines.

4.5.1.1 Basic text search

Open the text search dialog by pressing the button or by selecting Search|Text search in

the menu. The text search dialog which opens is displayed in Figure 37. The easiest way to

search for a string is to enter the search string in the left column of the table (column Search

sequence; the column Description is only informative when searching with types). If IUPAC

codes for nucleic acids are used, make sure to activate the option Use IUPAC nucleic acid

codes. A list of IUPAC nucleic acid codes can be displayed by pressing the blue arrows next to

the check box. Finally press Search. Subsequently hits are displayed in the Graphics page of

the program (Figure 38).

Figure 37. The text search dialog in SeqoolM.

Searching for patterns Analysis of multiple sequences with SeqoolM

 35

Figure 38. Hits are displayed in the hits graph.

Options

A few options allow to customize the output:

Adjust scale automatically - Adjusts the scale of the graphic output automatically. If this

 option is deactivated, the y-axis shows the range from 0.0

 to 1.0, otherwise the output is adjusted according to the

 highest frequency observed.

Adjust scale for number of - Displays the frequencies of a word relative to the number

sequences at current position of sequences in the dataset which cover the position where

 a word was found. This option is useful if a dataset

 contains sequences with varying lengths. For example,

 consider a dataset containing three sequences of varying

 lengths, e.g. 40 nt, 60 nt and 100 nt. If a given word is

 found at the 50th position in one of the three sequences the

 absolute frequency would be 0.333. However, only two

 sequences actually covered the position 50, hence the

 relative frequency is in fact 0.500.

Display hits at each position - Shows the number of hits at each position of the

 sequences in the graphical output.

Text output - Shows a table containing the number of observed and

 expected hits for each word, the number of sequences in

 which a word was found, the score, and the number of hits

 at each position in the sequences.

Searching for patterns Analysis of multiple sequences with SeqoolM

 36

Alternatively to the text search described above, a more rapid text search can be performed by

entering a given search text in the box Quick text search, which is located at the top of the

Graphics tab sheet (see Figure 38). The quick text search uses the same options currently

selected in the Text search dialog (adjustment of scales, etc.).

4.5.1.2 Types – Frequently used / alternative search-patterns

SeqoolM offers the possibility to create types for searching. A type is intended for frequently

used search patterns and it may include more than one search text. For example, the type

‘Stop codon’ allows to search for all three stop codons by including all three stop codons as

alternative search patterns. For a detailed description of types and their use for text search

refer to the respective section in the description of the program Seqool (chapter 3.4.1.3).

Searching for patterns Analysis of multiple sequences with SeqoolM

 37

4.5.2. Searching with pattern recognition models

4.5.2.1 Introduction

The Seqool program package provides separate modules for creating a variety of pattern

search models and models, e.g. position specific score matrices (weight matrices), profile

hidden Markov models, and others, and more advanced models for combining basic models,

such as decision trees or neural networks. Modules for building such models can be started by

selecting the respective component in the Tools menu or using the respective tool buttons

(Figure 39). All these models can be used for searching in Seqool and SeqoolM.

Figure 39. Tool buttons for starting program components for signal-recognition models.

4.5.2.2 Basic model search

Pressing the button (or selecting Search|Model search in the menu) opens the model

search dialog (Figure 40). When searching with a specific model, only models contained in the

default model directory are listed. This default directory can be changed permanently in the

main menu (menu File|Configure) or only temporally (until exiting the program) by pressing the

“Model directory” button (if a new model was saved in the model directory while the model

search dialog was still open, the list of models can also be actualised by pressing).

For selecting a model, choose one of the models listed in the Select model box and press the

button Add model. Additional information about the model is displayed below the Select model

box, such as the model type, the models name, the description, and the file name (see Figure

40). Press Search for starting the model search. An example of the graphical and the text

output, respectively, is shown in Figure 41 and in Figure 42.

Searching for patterns Analysis of multiple sequences with SeqoolM

 38

Figure 40. The model search dialog in SeqoolM.

Figure 41. Example of search results for the model search.

Searching with PSMM/WMM: Branch Site, human (Wheigh t Martix from Senapathy et al. 1990)

Threshold: 3,0000

Seq. Pos. Score Hit
1 48 3,300 aggccccaatatgat
2 39 6,981 aaagactgatcccca
3 38 7,048 tgtgcctgacagctg
...

...

9999 47 5,667 tgtgtctcacttaga
10000 47 3,300 gaggcccaatatgca
10000 61 3,921 acctgttcatctgca

Mean hits per sequence: 1,92
Overall hits: 19170
Sequences: 10000

Hits at each position:
Pos.: 1 2 3 4 5 6 7 8 9 10 11 12 13 .. .
Hits: 224 224 230 217 264 194 199 211 233 210 233 2 16 217 ...

Figure 42. Example of a text output for model search (options: Print all scores above threshold and

Display hit string were activated).

Searching for patterns Analysis of multiple sequences with SeqoolM

 39

Options

Several options allow to customize the graphical and the text output. A number of these options

allow to refine or filter certain hits according to their score or their position. Furthermore, the

sequence of all matches can be listed in the text output and may subsequently be used for a

refinement of a model.

Adjust scale automatically - Adjusts the scale of the graphic output automatically. If this

 option is deactivated, the y-axis shows the range from 0.0

 to 1.0, otherwise the output is adjusted according to the

 highest frequency observed.

Adjust scale for number of - Displays the frequencies of a word relative to the number

sequences at current position of sequences in the dataset which cover the position where

 a word was found. This option is useful if a dataset

 contains sequences with varying lengths. For example,

 consider a dataset containing three sequences of varying

 lengths, e.g. 40 nt, 60 nt and 100 nt. If a given word is

 found at the 50th position in one of the three sequences the

 absolute frequency would be 0.333. However, only two

 sequences actually covered the position 50, hence the

 relative frequency is in fact 0.500.

Display hits at each position - Shows the number of hits at each position of the

 sequences in the graphical output.

Text output - Shows a tables with various information, depending on the

 options and filters selected. E.g. Scores and positions of

 the highest scoring hit for each sequence, all scores for

 each position of a sequence, etc. Several options are

 available for text output:

 Print all scores above threshold: Displays the scores of

 each hit with a score that is higher than the score threshold

 of the model. For each hit the hit sequence can be

 displayed, including neighbouring sequences (option:

 Display hit string)

 Print all scores: Displays the scores of each and every

 position within each sequence, irrespective of the score

 threshold of the model.

 Print number of hits with scores above threshold: Shows

 the number of hits for each sequence which are above the

 score threshold of the model.

Searching for patterns Analysis of multiple sequences with SeqoolM

 40

Range - Allows to search only within a given range, e.g. between

 the position 100 and 150 nt. Selecting 0 in the “End” box

 searches until to the end of each sequence.

Search for best hit only - Only the hit with the highest score is reported for each

 sequence.

Search only closest hit to position - Only the hit (with a score above the score threshold of the

 model) which is closest to a given position is reported.

Customizing SeqoolM Analysis of multiple sequences with SeqoolM

 41

4.6. Customizing SeqoolM

4.6.1. Configuring SeqoolM

Basic settings can be customized using the menu option File|Configure… . All options listed in

the configure window (Figure 43) are permanent, i.e. the respective settings are loaded by

default when the program starts. The default type file refers to the file containing all types which

can be used for text search (see chapter 4.5.1.2). The Codon usage file defines which codon

usage table is used for the calculation of codon usage of codon preference. The Model

directory determines which folder contains the pattern recognition model which are available for

searching in SeqoolM (when using a model comprising several submodels remember that also

all sub-models must be located in the same folder as the main model). Finally, it can be

selected how many recently opened files are displayed in the file menu.

Figure 43. The dialog for customizing basic settings of SeqoolM.

4.6.2. Program priority

Since calculations may be time intensive for large sequence datasets, SeqoolM may occupy

most computer resources (processor time). This may impede other applications to run

smoothly. Therefore, the program priority of SeqoolM can be adjusted using the menu option

File|Configure…|Program priority. Five settings can be selected. The highest priority setting

(highest) may considerably slow down even the operating system, causing even mouse

movements to be delayed. The two lowest priority levels (low and idle) allow other programs to

run smoothly while calculations in SeqoolM will take more time than usually.

Customizing SeqoolM Analysis of multiple sequences with SeqoolM

 42

Figure 44. Program priority settings in SeqoolM.

Profiles (WMM, PSSM) Building pattern recognition models

 43

5. Building pattern recognition models

5.1. Profiles (WMM, PSSM)

Module Profile

5.1.1. Introduction

A simple way to identify signals in nucleotide sequences is to observe nucleotide frequencies at

each position of signals and calculate probabilities for their occurrence. Profiles (or weight

matrices models, WMM) show the probability of observing a nucleotide at a given position

(Table 1). A graphical representation of this weight matrix is shown in Figure 46.

 Position: -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 +1 +2

 A 0,092 0,093 0,111 0,109 0,086 0,089 0,219 0,057 0,908 0,055 0,249 0,230

 C 0,352 0,347 0,372 0,404 0,430 0,374 0,320 0,672 0,019 0,019 0,153 0,216

 G 0,129 0,138 0,134 0,104 0,078 0,081 0,232 0,023 0,055 0,907 0,483 0,223

 T 0,427 0,423 0,384 0,383 0,406 0,456 0,230 0,248 0,019 0,018 0,115 0,331

Table 1. Probabilities of observing a nucleotide at a given position around the human acceptor splice

site, obtained from 5000 constitutive spice sites extracted from the Altextron database (Clark and

Thanaraj 2002).

1 2 3 4 5 6 7 8 9 10 11 12

Acceptor splice site, human

0,00

0,25

0,50

0,75

1,00

F
re

qu
en

cy

Position

Figure 44. Graphical illustration of the weight matrix shown in Table 1.

Weight matrices can be used for searching for example for putative acceptor splice sites in

unknown sequences by calculating the probability (more specifically the so-called log-odds

score) of a subsequence to correspond to a splice site. Usually, a threshold is applied to

distinguish putative signals from random or “false” signals. This threshold is determined

Profiles (WMM, PSSM) Building pattern recognition models

 44

experimentally by comparing the distributions of scores obtained from the model for real splice

sites and false splice sites (Figure 46).

Figure 46. Score distribution of real human acceptor splice sites (red) and “false” acceptor splice sites

(blue, subsequences containing ‘AG’ but not being real splice sites), obtained from a simple weight

matrix model (profile).

Similar to weight matrix models are position-specific score matrices (PSSM). Position-specific

score matrices differ from weight matrices only in the fact that nucleotide probabilities are

transformed to log-odds scores. A PSSM of the preceding weight matrix model is given in Table

2.

 Position: –10 –9 –8 –7 –6 –5 –4 –3 –2 –1 +1 +2

 A -3,44 -3,43 -3,17 -3,20 -3,54 -3,49 -2,19 -4,14 -0,14 -4,18 -2,01 -2,12

 C -1,51 -1,53 -1,43 -1,31 -1,22 -1,42 -1,65 -0,57 -5,75 -5,69 -2,70 -2,21

 G -2,95 -2,86 -2,90 -3,26 -3,68 -3,62 -2,11 -5,43 -4,19 -0,14 -1,05 -2,16

 T -1,23 -1,24 -1,38 -1,38 -1,30 -1,13 -2,12 -2,01 -5,71 -5,78 -3,13 -1,60

Table 2. A position-specific score matrix (PSSM) of the human acceptor splice site.

5.1.2. Increased performance using information cont ent

A modification introduced by Schneider (Schneider et al. 1986) applies information theory for

searching signals. Information content is calculated for each nucleotide and each position,

reflecting how much information of a signal is due to the occurrence of a specific nucleotide

(see Schneider et al. 1986 and Schneider 1997). A model of the human acceptor splice site

and using information content is shown in Figure 46. The size of nucleotide letters indicate the

amount information content. Negative values are displayed by upside-down letters.

Profiles (WMM, PSSM) Building pattern recognition models

 45

1 2 3 4 5 6 7 8 9 10 11 12

Acceptor splice site, human, IC

0

6

12

18

24

bi
ts

Position

(Upsidedown letters indicate negative scores)

Figure 46. A model of the human acceptor splice site using information content (drawn using the module

Profile).

5.1.3. Adding pseudocounts

If a profile is based on a small amount of sequences, it is probable that the obtained nucleotide

frequencies are only very approximate. Consequently, searching with the corresponding model

might not identify all real signals reliably. The recognition can be improved by adding

pseudocounts to the obtained nucleotide frequencies. A number of different methods for the

calculation of pseudocounts are proposed in the literature (see e.g. Durbin et al. 1998). In

Seqool, pseudocounts are derived from PAM substitution matrices and can be adjusted using

a pseudocount weight (as described in Durbin et al. 1998).

5.1.4. Higher order models

Profiles (or PSSMs) can also be calculated using di- or trinucleotide counts for each position.

Notably, this procedure does not correspond to a Markov chain of order two or three,

respectively. The inclusion of di- or trinucleotides might be useful when the nucleotide

probabilities at neighbouring positions are mutually dependent.

Profiles (WMM, PSSM) Building pattern recognition models

 46

5.1.5. Building a WMM/PSSM

Start the application: Profile

1. Select a Name for your model. Optionally add a short description.

2. Select an Alignment file containing a set of aligned sequences containing your signal.

3. Select a file containing Background frequencies (used for the calculation of pseudocounts). This
file contains the expected nucleotide frequencies of the region where your signal is present.
Frequency files can be created using SeqoolM (Menu-item: Statistics|Oligonucleotides).

4. Select if you want to calculate a conventional PSSM using Log-odd scores or Information
content.

5. Select if you want to use nucleotide (order 1), dinucleotide (order 2) or trinucleotide counts (order
3) for you model. Usually, nucleotide counts do well.

6. If you want to calculate a PSSM using di- or trinucleotide counts and you do not have the
respective background-frequency-file available (i.e. the “*.fre” file for di- or trinucleotides), you
might select the option Estimate di-/tri-nucleotide frequencies from nt frequencies. In this case
only a nucleotide frequency file is needed as background-frequency-file, and di- or trinucleotide
frequencies are roughly estimated based on that file. However, it is recommended always to use
a background frequency file.

7. If you have chosen to build a model calculating log-odds scores, select the Weight of
pseudocounts. Models with small weights might not identify some real signals, while large
weights will lead to unspecific models.

8. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.

9. Select a Colour for the graphical representation of hits of this model in Seqool.

10. Press the Build button.

Evaluate the model using the following options:

Show parameters Display model parameters

Draw sequence logo Create a graphical representation of the model

Score sequences Score a set of sequences. Use this option to reveal the best score threshold by
comparing score distributions of real signals and false signals (or random
sequences) and for testing a model. Note that the sequences should have the
same length as those of the alignment file used for training the model. For
longer sequences additional nucleotides are ignored. The dialog offers some
additional options, such as the saving of sequences above a score threshold.

Maximum Dependence Decomposition (MDD) Building pattern recognition models

 47

5.2. Maximum Dependence Decomposition (MDD)

Module MDD

5.2.1. Introduction

In several cases, nucleotide positions are mutually dependent, i.e. the probabilities of observing

a nucleotide at one positions depends strongly on the nucleotides which are observed at other,

even quite distant positions. Burge and Karlin (1997) developed maximum dependence

decomposition (MDD) for the recognition of donor splice sites. MDD divides a set of signals into

several subsets of more similar signals, and subsequently builds a weight matrix (WMM/PSSM)

for each subset. This is done by repetition of the following steps:

First, the position is determined which (on average) correlates most with any other position in

the signal (determined by a number of χ²-tests). Second, the set of analysed sequences is

subdivided into those sequences containing the most frequent nucleotide of that position and

those not containing it. Then, the preceding two steps are repeated for each subset.

The whole procedure is repeated until a minimum number of sequences is obtained in a

subset. Finally, for each subset one weight matrix (WMM/PSSM) is built. When searching with

an MDD model, a putative signal is first analysed regarding the nucleotides observed at the

most significant positions, and then it is scored by the corresponding sub-model.

5.2.2. Example

The construction of an MDD model is demonstrated for a set of 5000 human donor splice sites

(Table 3). First, a weight matrix is calculated from all sequences. Then, a consensus sequence

is constructed from this weight matrix given a threshold of 30 percent. This means that all those

bases are assigned to a letter in the consensus sequence which show a minimum frequency of

30 percent (0.3). The respective consensus in this example is [a/c]AGGT[a/g]AGTG (see

Table 3). In the next step, all sequences are analysed at each position of the consensus

sequence in order to reveal dependencies. This is done by many pairwise chi-square tests. The

chi-square values indicate the level dependence between two positions. For example, position

+3 shows the highest dependence with position +5, with the respective chi-square value being

412.7. The next highest dependence of position +3 is with position +4, with a chi-square of

230.9. To get an estimate which position shows the highest overall dependence, the single chi-

square values are summed up for each position. In the example it becomes clear then, that

position +5 shows the overall highest dependence (this position shows the highest sum of all

Maximum Dependence Decomposition (MDD) Building pattern recognition models

 48

chi-squares: 1846.6). This means, that the overall composition of the donor site depends

strongly on which base is present at that position.

After having identified the most significant position within the donor splice site, the set of splice

sites are subdivided: Since the most frequent letter at position +5 is a G, the set of splice sites

is split into two subsets, one containing those sequences which have a G at position +5, and

another one with those sequences which have not. This is the first decomposition step. The

resulting weight matrices for both subsets are shown in 2.a) and 2.b) of Table 3. Again, weight

matrices are calculated for each subset separately, and the position with the highest

dependence is identified by chi-square tests.

The complete MDD model construction in this example results in 8 different weight matrices.

Figure 47 shows the score distributions for real acceptor splice sites and false splice sites

(sequences containing AG, but not being real splice sites).

Figure 47. Score distributions of 1000 constitutive human acceptor splice sites (red) and 1000 false

splice sites (blue, sequences containing AG, but not being real splice sites). The overall recognition is

about 91 percent.

Note: When using a set of splice sites for building this model, make sure to use only canonical splice

sites! If a set of donor splice sites contains e.g. few non-canonical splice sites, then the most significant

positions determined by MDD will be the G and the T at the splice site core. The set will then be divided

into two subsets, one of the sequences containing these bases (the canonical splice sites, i.e. almost all

sequences) and a very small subset with sequences not containing these bases at the splice site core

(the non-canonical splice sites). The latter set is likely to contain less sequences than the minimum

number given by the subdivision threshold (e.g. a minimum of 200 sequences). Consequently MDD

stops without subdividing anything!

Maximum Dependence Decomposition (MDD) Building pattern recognition models

 49

1. Construction of a weight matrix from all sequenc es and analysis which positions show the strongest mutual dependence:

Weight matrix of all sequences

Pos -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10
A 0,27 0,28 0,25 0,27 0,29 0,26 0,28 0,28 0,26 0,28 0,28 0,29 0,33 0,63 0,10 0,00 0,00 0,56 0,70 0 ,08 0,17 0,28 0,21 0,20 0,21
C 0,27 0,26 0,28 0,27 0,26 0,26 0,25 0,24 0,26 0,25 0,25 0,28 0,37 0,12 0,03 0,00 0,00 0,03 0,08 0 ,06 0,16 0,20 0,26 0,28 0,24
G 0,26 0,23 0,26 0,25 0,23 0,26 0,26 0,23 0,25 0,24 0,21 0,22 0,18 0,12 0,79 1,00 0,00 0,38 0,11 0 ,80 0,20 0,32 0,25 0,25 0,27
T 0,21 0,23 0,21 0,21 0,23 0,22 0,22 0,25 0,23 0,24 0,25 0,21 0,12 0,13 0,07 0,00 1,00 0,02 0,11 0 ,06 0,47 0,21 0,28 0,27 0,29
Cons - - - - - - - - - - - - a/c A G G T a/g A G T G - - -

Chi-square values for all pairs of positions:

Pos -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 Sum
-15 - 0.1
-14 0 - 0.1
-13 0 0 - 0.1
-12 0 0 0 - 0.1
-11 0 0 0 0 - 0.1
-10 0 0 0 0 0 - 0.1

-9 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-8 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-7 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-6 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-5 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-4 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-3 ac 0.3 2.5 5 2.5 4.5 3.7 1.5 11 2.5 6.1 28.1 162.7 - 141.3 27.9 0 0 14.2 45.7 64 39.3 8.5 3.6 4.3 3 582.3
-2 A 6.4 14 1.5 1 36.1 2.5 7.9 20.6 10.7 3.1 28.1 13.5 417.1 - 197.3 0 0 92.5 209.5 294.3 181.3 41 2.9 25 7.9 1614.4
-1 G 2.1 12.4 26.1 2.5 2.6 24.1 5.6 0.8 11.4 7.6 1.5 29.2 42.7 384.5 - 0 0 51.3 175.8 228.9 548.1 43.8 31.7 28.1 18.2 1679
1 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0.1
2 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0.1
3 ag 6.9 2.2 1.4 0.3 2.8 7.8 7.9 1.4 5.7 1.4 8.2 1.8 20.4 63.7 50.6 0 0 - 35.6 20.2 18.2 6.7 5.3 3.6 4.4 276.5
4 A 3.9 2.7 4.7 3.4 5 13.6 8 0.4 13.7 9.6 10.2 1.5 54.9 209.8 170.9 0 0 230.9 - 157.9 8.8 19.5 2.7 2.1 2.3 936.5
5 G 9.1 4.4 3.5 0.9 10 4 14 7.1 15.6 4.9 29.3 11.4 65.8 296.7 227.9 0 0 412.7 433.4 - 130.3 99.3 18 24.8 23.4 1846.6
6 T 4 3.9 18.6 6.6 2 13.4 0.3 5.2 15.6 5.5 1 8.1 47.1 184.4 539.6 0 0 46.7 20.2 122.6 - 131.5 43.7 11.2 29.8 1261.2
7 G 23 9.3 32.6 5.3 9.8 10.3 9.3 16.1 10.7 6.1 28.8 20.9 14.1 17.7 0.8 0 0 83.9 31.3 42.6 160.5 - 71.5 54.3 26.7 685.6
8 0 - 0 0 0.1
9 0 - 0 0.1

10 0 - 0.1

Table 3. Maximum dependence decomposition (human donor sites, -15..+10 nt):

Maximum Dependence Decomposition (MDD) Building pattern recognition models

 50

2. Construction of weight matrices for all those se quences containing or not containing G at position +5:

a) Decomposition of those sequences containing G at position +5

Weight matrix of the sequences containing G at position +5

Pos -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10
A 0.26 0.28 0.24 0.26 0.28 0.25 0.27 0.28 0.25 0.27 0.27 0.29 0.32 0.57 0.12 0.00 0.00 0.49 0.74 0 .00 0.16 0.29 0.20 0.19 0.20
C 0.28 0.27 0.28 0.27 0.26 0.26 0.26 0.25 0.27 0.24 0.26 0.28 0.36 0.14 0.04 0.00 0.00 0.04 0.04 0 .00 0.16 0.20 0.26 0.29 0.25
G 0.26 0.23 0.27 0.26 0.23 0.26 0.26 0.24 0.26 0.24 0.22 0.22 0.19 0.14 0.75 1.00 0.00 0.45 0.12 1 .00 0.18 0.33 0.26 0.26 0.28
T 0.20 0.22 0.21 0.21 0.22 0.22 0.21 0.24 0.23 0.24 0.25 0.21 0.13 0.15 0.09 0.00 1.00 0.03 0.10 0 .00 0.50 0.18 0.27 0.26 0.27
Cons - - - - - - - - - - - - ac A G G T ag A G T G - - -

Chi-square values for all pairs of positions:

Pos -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 Sum
-15 - 0.1
-14 0 - 0.1
-13 0 0 - 0.1
-12 0 0 0 - 0.1
-11 0 0 0 0 - 0.1
-10 0 0 0 0 0 - 0.1

-9 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-8 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-7 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-6 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-5 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-4 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-3 ac 0.2 3.4 2.8 1.5 4.5 5.1 2.5 7.9 1.8 4.6 26.1 131.8 - 101 13.8 0 0 13.3 22.2 0 30 8 1.6 3.4 2.3 388
-2 A 4.3 13.3 3.6 1.9 32 4.3 5.2 15.6 10.3 3 13.1 11.2 319.5 - 94 0 0 87.6 171.7 0 138.3 25.3 3.1 18.5 5.3 981.2
-1 G 1.2 10.6 31.9 2.6 3.6 29.3 2.3 0.1 20.9 6.7 1.4 36.3 25.7 260.3 - 0 0 87.1 144.6 0 491.8 38.1 40.2 30.8 24 1289.4
1 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0.1
2 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0.1
3 ag 5.3 3 0.1 0.6 4.2 6.4 10.8 2.5 7.7 0.7 8.1 1.6 22.2 85 63.3 0 0 - 32 0 13.9 4.7 8.7 4.3 3.4 288.2
4 A 5.5 2.9 3.3 1.8 3.9 12.7 6.5 0.4 8.5 5.5 8.3 0.6 34 159.5 140.8 0 0 186.2 - 0 0.4 5.3 4.9 1 3.2 595.5
5 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0.1
6 T 1.5 5 25.8 7 1.5 14.7 0.3 2.3 17.2 2.5 4.2 11.6 36.6 146.1 487 0 0 23.3 1.6 0 - 107.2 42.7 14 33.1 985.1
7 G 11.3 7.9 23.9 3.1 12.2 3.7 8.4 12 4.6 2.7 28.7 14.2 12.5 8.2 0.4 0 0 54.5 17.6 0 117 - 42.3 39.1 15.2 439.2
8 0 - 0 0 0.1
9 0 - 0 0.1

10 0 - 0.1

Table 3. Continued.

Maximum Dependence Decomposition (MDD) Building pattern recognition models

 51

b). Decomposition of those sequence not containing G at position +5:

Weight matrix of the sequences not containing G at position +5

Pos -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10
A 0.29 0.30 0.27 0.27 0.31 0.28 0.29 0.27 0.30 0.30 0.32 0.32 0.37 0.86 0.02 0.00 0.00 0.84 0.55 0 .39 0.23 0.24 0.25 0.24 0.23
C 0.25 0.24 0.28 0.27 0.25 0.25 0.24 0.23 0.24 0.26 0.22 0.25 0.42 0.04 0.00 0.00 0.00 0.01 0.22 0 .29 0.18 0.19 0.25 0.24 0.21
G 0.24 0.22 0.25 0.24 0.19 0.25 0.22 0.22 0.22 0.22 0.17 0.20 0.15 0.04 0.96 1.00 0.00 0.13 0.08 0 .00 0.28 0.25 0.21 0.22 0.23
T 0.22 0.24 0.20 0.22 0.25 0.22 0.25 0.28 0.24 0.22 0.29 0.23 0.06 0.06 0.01 0.00 1.00 0.02 0.15 0 .32 0.31 0.32 0.29 0.31 0.33
Cons - - - - A - - - - A A A a/c A G G T A A a /t T T - T T

Chi-square values for all pairs of positions:

Pos -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 Sum
-15 - 0.1
-14 0 - 0.1
-13 0 0 - 0.1
-12 0 0 0 - 0.1
-11 A 1.5 2.8 7.4 55.9 - 14.4 1.8 16.3 0.4 2.8 8.7 8.4 5.8 4.8 8.8 0 0 6.2 1.1 8.7 0.4 1.8 2.1 5.8 1 166.7
-10 0 0 0 0 0 - 0.1

-9 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-8 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-7 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
-6 A 2 7.6 3.9 6 2.7 0.8 5.5 4 18 - 17.1 1.7 0.1 4.9 0.2 0 0 1.5 0.8 2.8 1.4 0.8 1.8 3.7 0.1 87.6
-5 A 0.6 3.3 11.3 2.1 5.2 4.1 2 1.4 0.9 24.8 - 1.2 2.2 6.6 5.9 0 0 5 3.4 3.3 0.7 1.5 6.5 0.7 2.1 94.7
-4 A 0.8 2.1 7.6 4.1 3.3 1.7 4 1.2 8.7 10.2 12.7 - 17.4 7.1 8.8 0 0 1.5 6.9 2.3 1.6 8.1 5 2.1 9.4 126.5
-3 ac 0.8 0.7 3.9 8.3 0.5 2 0.9 8.4 0.5 3.1 5.5 45.6 - 7.9 4.3 0 0 7.1 11.5 7.6 3.6 3.2 3.2 0.5 3 131.9
-2 A 6.5 4.1 6.1 1.1 3.7 3.9 0.8 3.6 2.9 2.8 12.5 7.9 53.9 - 59.6 0 0 4.4 2.6 0.3 4.8 1 2.5 7.9 0.7 193.7
-1 G 0.5 7.8 0.2 2.3 8 0.7 0.4 0.7 1.1 1.2 18.7 8.2 7.9 44.7 - 0 0 2.9 23.7 6.9 19.4 21.9 9.7 4.3 3 194.1
1 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0.1
2 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0.1
3 A 13.4 2.7 14.9 2.6 1.1 5 1.7 0.7 2.6 3.3 8.1 4.7 6.8 7.7 3.5 0 0 - 21.3 5.7 0.1 20 3.5 5.8 7.2 142.4
4 A 1.5 1.9 1.5 1.5 1.4 3.1 0.3 1 14.1 3.8 4.6 2.3 7.2 9.1 23.4 0 0 12.4 - 12.4 4 14.8 1.5 9 10.5 141.4
5 at 3.6 0.4 8.3 0.6 5.2 6.9 4.5 12.7 7.9 3.8 16.1 2.5 4.5 0.5 32.9 0 0 10.4 8.5 - 89.4 20.3 20.9 9.5 29.1 298.6
6 T 9.3 0.4 1 5.1 6.8 1.7 4.2 5.3 4.4 4.5 0.8 3.8 1.1 1.6 4.5 0 0 0.2 6.3 3.1 - 17.6 18.9 1.8 7.9 110.4
7 T 7.8 4.8 6.4 3.9 4.3 18.4 0.2 3.5 9.9 2.1 0.3 7.4 9.2 1.3 30.8 0 0 2.9 22.1 2.4 4.6 - 21.2 16.6 4.3 184.4
8 0 - 0 0 0.1
9 T 1.9 9.6 1.6 11.3 3.7 1.4 3.1 1 1.7 6.3 3.6 4.3 1.2 9.1 4.8 0 0 1.3 12.8 1.9 5.5 17.7 27.5 - 5.6 136.9

10 T 4.6 3.5 3.6 5.2 1.8 8.6 4.1 4.3 10.6 9.9 2.4 2.1 6.6 3 5.5 0 0 1.7 13.2 5.5 5 16 7.2 22.7 - 147.1

Table 3. Continued.

Maximum Dependence Decomposition (MDD) Building pattern recognition models

 52

5.2.3. Building an MDD model

Note: All single submodel files (WMMs/PSSMs) used for an MDD model must be located in
the same file path.

Start the application: MDD

1. Select a Name for your model. Optionally add a short description.

2. Select an Alignment file containing a set of aligned sequences containing your signal.

3. Select a file containing Background frequencies (used for the calculation of pseudocounts). This
file contains the expected nucleotide frequencies of the region where your signal is present.
Frequency files can be created using SeqoolM (Menu-item: Statistics|Oligonucleotides).

4. Select if you want to use conventional PSSMs using Log-odd scores or Information content.

5. Select a Cutoff value (nucleotide percentage) for the calculation of the consensus (30 percent
should be good in most cases.

6. Select the Significance level for the χ²-tests (0.001 should be good for most cases).

7. Define when to stop the iterative decomposition of the sequence set, i.e. at which minimum
number of sequences in a subset. Too low numbers will result in the subdivision into too many
subsets with too few sequences for each subset, which results in an unreliable model.

8. If you have chosen to build a model calculating log-odds scores, select the Weight of
pseudocounts. Models with small weights might not identify some real signals, while large
weights will lead to unspecific models.

9. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.

10. Select a Colour for the graphical representation of hits of this model in Seqool.

11. Press the Run MDD button.

Evaluate the model using the following options:

Show decision tree Display matrices and other results

Score sequences Score a set of sequences. Use this option to reveal the best score threshold
by comparing score distributions of real signals and false signals (or random
sequences) and for testing a model. Note that the sequences should have
the same length as those of the alignment file used for training the model.
For longer sequences additional nucleotides are ignored. The dialog offers
some additional options, such as the saving of sequences above a score
threshold.

Profile Hidden Markov Models (PHMM) Building pattern recognition models

 53

5.3. Profile Hidden Markov Models (PHMM)

Module PHMM

5.3.1. Introduction

Profile hidden Markov models are similar to Weight matrices, since they measure nucleotide

frequencies for each position of a signal, but they additionally include the possibility that some

residues are missing or that residues are inserted into a signal. Since most signals on DNA or

RNA are uninterrupted short sequences, e.g. snRNAs of the splicing complex, simple matrices

are adequate for their identification. However, in some cases binding mechanism involve more

than one recognition motive. For example in the polypyrimidine-tract-binding proteins two RNA

recognition motives were proposed (Banerjee et al. 2003). When binding to the polypyrimidine

tract, two short subsequences are recognized, which are separated by a variable stretch of

unbound RNA.

5.3.2. Example

For illustration of how profile HMMs are built, a simple alignment of fictive sequences is used:

123456789
Sequence 1 aca---atg
Sequence 2 tcaactatc
Sequence 3 tcaactatc
Sequence 4 acac--agc
Sequence 5 aga---atc
Sequence 6 accg--atc

A weight matrix from this alignment contains the following probabilities:

Pos 1 2 3 4 5 6 7 8 9

A 0.66 0.00 0.83 0.50 0.00 0.00 1.00 0.00 0.0 0

C 0.00 0.83 0.00 0.25 1.00 0.00 0.00 0.00 0.8 3

G 0.00 0.17 0.17 0.25 0.00 0.00 0.00 0.17 0.1 7

T 0.33 0.00 0.00 0.00 0.00 1.00 0.00 0.83 0.0 0

Notably, this weight matrix does not include any information about the inserted bases (inserts)

observed in the sequences 2 and 3 (inserted CT), and about the missing bases in the

sequences 1 and 5 (missing base at position 4). In reality, it is not really evident which bases

are missing or which ones are inserted. It could be argued that sequences 2, 3, 4, and 6 have

inserts, but of variable length (no sequences would show a missing base then). In order to

analyse this alignment more systematically, those positions which are covered in the majority of

Profile Hidden Markov Models (PHMM) Building pattern recognition models

 54

all sequences are assumed to reflect the “original” signal (applying a minimum percentage of

50%). These positions are labelled “matches” (marked with an M):

123456789
aca---atg
tcaactatc
tcaactatc
acac--agc
aga---atc
accg--atc
MMMM MMM

Given these labels, two sequences of this alignment contain an insert beginning after position 4

(2 of the 4 sequences which have a base at position four = 50 %). In these two sequences, the

insert is followed by another insert in one case, while the next time, the insert ends (an insert of

two nucleotides). That means, that once the insert “starts”, the probability “continuing” the insert

is 50 %. Apart from the two sequences containing the insert, 2 sequences of all 6 lack a base at

position 4 (33 %). Referring again to the defined “matches”, the probability of continuing with a

second missing base (a “delete”) is 0. Since these sequences show a base at the next “match”

position (position 7), the probability of continuing with a “match-state” is 1.

Combining this information about “deletes” and “inserts” with the weight matrix, the following

graphical representation of the profile HMM results (Plan 9 architecture, Figure 48). Deletes are

represented by circles at the top. Inserts are depicted as diamonds in the middle of the graph.

Matches are shown as rectangles at the bottom of the graph. They also contain the

probabilities of the weight matrix. Lines connecting these match-, insert, and delete “states”

correspond to the probabilities of observing a transition from one state (match, insert, delete) to

another.

1,000 1,000 1,000 0,667

0,333

0,500

0,500
0,500

0,500

1,000

1,000 1,000 1,000
Begin

a = 0,612
c = 0,030
g = 0,042
t = 0,315

a = 0,024
c = 0,761
g = 0,167
t = 0,048

a = 0,761
c = 0,167
g = 0,048
t = 0,024

a = 0,473
c = 0,241
g = 0,259
t = 0,027

a = 0,909
c = 0,018
g = 0,055
t = 0,018

a = 0,024
c = 0,048
g = 0,167
t = 0,761

a = 0,024
c = 0,761
g = 0,167
t = 0,048

End

Figure 48. A simple example of a profile HMM (drawn using the module PHMM).

Profile Hidden Markov Models (PHMM) Building pattern recognition models

 55

When searching for a signals within an unknown sequence, a putative hit sequence is

“reconstructed” by the HMM by trying to find a way (“path”) through the HMM, which

corresponds to the sequence. Due to inserts and deletes, an identical sequence can usually be

generated by a number of different paths through the graph (except in the simple example

given above). For scoring a sequence, either the score of the most probable path is calculated

(Viterbi-algorithm), or the cumulative score of all possible paths (Forward-algorithm). The Plan

9 profile HMM of Seqool uses the latter method.

As in profiles models, pseudocounts calculated from substitution matrices can be added also to

profile HMMs, and models can be built using either mono-, di-, or trinucleotides (order).

5.3.3. Building a PHMM

Start the application: PHMM

1. Select a Name for your model. Optionally add a short description.

2. Select an Alignment file containing a set of aligned sequences containing your signal.

3. Select a file containing Background frequencies (used for the calculation of pseudocounts). This
file contains the expected nucleotide frequencies of the region where your signal is present.
Frequency files can be created using SeqoolM (Menu-item: Statistics|Oligonucleotides).

4. Select if you want to use nucleotide (order 1), dinucleotide (order 2) or trinucleotide counts (order
3) for you model. Usually, nucleotide counts do well.

5. If you want to calculate a PHMM using di- or trinucleotide counts and you do not have the
respective background-frequency-file available (i.e. the “*.fre” file for di- or trinucleotides), you
might select the option Estimate di-/tri-nucleotide frequencies from nt frequencies. In this case
only a nucleotide frequency file is needed as background-frequency-file, and di- or trinucleotide
frequencies are roughly estimated based on that file. However, it is recommended always to use
a background frequency file.

6. Define match-states: Either define matches automatically, choose a Insert cutoff value, e.g.
define a match if no more than 50 percent of all sequences show a missing base at a position, or
select match-states manually by using the option Select match-states.

7. Optionally select Model insert emissions with from frequencies from alignment. In this case, the
probability of observing each base in a given insert is calculated from the observed nucleotide
frequency of that insert.

8. Select the Weight of pseudocounts. Models with small weights might not identify some real
signals, while large weights will lead to unspecific models.

9. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.

10. Select a Colour for the graphical representation of hits of this model in Seqool.

11. Press the Build button.

Profile Hidden Markov Models (PHMM) Building pattern recognition models

 56

Evaluate the model using the following options:

Show parameters Display model parameters

Draw HMM Create a graphical representation of the model

Score sequences Score a set of sequences. Use this option to compare score distributions
of real signals and random or false sequences, for evaluating score
thresholds, and for testing a model. Note that the sequences should
have the same length as those of the alignment file used for training the
model. For longer sequences additional nucleotides are ignored. The
dialog offers some additional options, such as the saving of sequences
above a score threshold.

Show Matrix for Seqs… Score a set of sequences and display the matrices displaying the paths
through and scores of the HMM.

Oligonucleotide-frequency-models (OFM) Building pattern recognition models

 57

5.4. Oligonucleotide-frequency-models (OFM)

Module OFM

5.4.1. Introduction

Oligonucleotide-frequency-models (OFMs) score the composition of a sequence, based on the

frequencies of oligonucleotides (note that the module DefOFM additionally allows the use of

GC content, codon usage, or codon preference instead). OFMs were introduced by Wang and

Marin (2006) who applied them in combination with profiles and other models for the

classification of constitutive and cryptic/alternative splice sites. When a signal is not

characterized by a specific recognition motive alone, but also by a certain oligonucleotide

distribution (e.g. due to the presence of regulatory elements, or due to codon usage), then

addition of an OFM to a classical signal search model can increase the overall recognition of

the signal. In constitutive acceptor splice sites, for example, splice site recognition can be

enhanced by combining a profile or PSSM model for the core splice site with an OFM model for

the downstream exon, and another OFM of the upstream intron. These OFMs can model the

different oligonucleotide distributions in exons and introns. When using such a combination for

searching splice sites within unknown sequences, splice site recognition will be based on both,

the detection of a strong core splice site and the occurrence of downstream and upstream

stretches with oligonucleotide compositions which are typical to introns or exon, respectively.

During the training process of OFMs, oligonucleotide frequencies are first calculated from a

training set. After all frequencies are known, a given test-sequence can be scored using the

following formula:

∑

=

background

observed

p

p
score 2log

where pobserved is the observed frequency of a given oligonucleotide and pbackground is the expected

or background frequency of that nucleotide.

Besides OFMs, this program module includes other sequence composition statistics, such as

codon usage or GC content.

Oligonucleotide-frequency-models (OFM) Building pattern recognition models

 58

5.4.2. Example

The following example demonstrates the calculation using an OFM for the first 24 nt of

(constitutive) human exons. Trinucleotides will be used in this example. Table 4 lists the

frequencies of trinucleotides observed in the exon start region (1..24 nt) and the frequencies for

whole exons (background frequencies).

 Frequency observed Background frequency a

aaa 0.0206 0.0155
aac 0.0146 0.0131
aag 0.0212 0.0239
aat 0.0142 0.0091
aca 0.0171 0.0163
acc 0.0156 0.0186
acg 0.0086 0.0079
act 0.0142 0.0133
etc. etc. etc.

Table 4. Trinucleotide frequencies for the first 24 nt of constitutive human exons. a Trinucleotide

frequencies from Burset and Guigo (1996).

Based on these frequencies the score of the sequence AAACAAT is calculated (this sequence

contains the trinucleotides AAA, AAC, ACA, CAA, and AAT):

score

+

+

+

+

=

)(

)(
log

)(

)(
log

)(

)(
log

)(

)(
log

)(

)(
log 22222 aatp

aatp

caap

caap

acap

acap

aacp

aacp

aaap

aaap

b

o

b

o

b

o

b

o

b

o

+

+

+

+

=
0091.0

0142.0
log

0198.0

0177.0
log

0163.0

0171.0
log

0131.0

0146.0
log

0155.0

0206.0
log 22222

 1.1083=

The positive score indicates that the sequence AAACAAT shows a trinucleotide composition

which is more frequent in the exon start region (first 24 nt of an exon) than in average exon

sequences.

5.4.3. Adding Pseudocounts

Especially for long oligonucleotides frequencies are difficult to estimate reliably using a limited

number of training sequences. For example, the use of oligonucleotides of length six results in

46 = 4096 different hexamers whose frequencies have to be estimated from a training set. It is

Oligonucleotide-frequency-models (OFM) Building pattern recognition models

 59

likely that some of the hexamers are rarely or even never observed. In such cases, it is strongly

recommended to include pseudocounts in the model, otherwise sequences containing very rare

oligonucleotides are incorrectly scored. As for the previous model types, pseudocounts of

OFMs are derived from PAM substitution matrices and can be adjusted using a pseudocount

weight (see Durbin et al. 1998).

Oligonucleotide-frequency-models (OFM) Building pattern recognition models

 60

5.4.4. Building an OFM

Start the application: OFM

1. Select a Name for your model. Optionally add a short description.

2. Select an Alignment file containing a set of aligned sequences containing your signal (only
necessary for calculation of oligonucleotide frequencies).

3. Select a file containing Background frequencies (only necessary for calculation of oligonucleotide
frequencies; used for the calculation of pseudocounts). This file contains the expected nucleotide
frequencies of the region where your signal is present. Frequency files can be created using
SeqoolM (Menu-item: Statistics|Oligonucleotides).

4. Select if you want to use score Oligonucleotide frequencies, GC content, Codon usage, or
Codon preference.

5. If you selected oligonucleotide frequencies:

- Choose the Length of the oligonucleotides to score

- Select a Pseudocount weight. Models with small weights might not identify some real
signals, while large weights will lead to unspecific models. Alternatively you may define a
default frequency for oligonucleotides (“words”) which were never found in your set of
sequences. This makes the calculation much faster. For hexanucleotides, the calculation
of pseudocounts with a given weight can take 15 minutes. If you don’t want to wait, just
kill the program and use default frequencies for missing oligonucleotides.

- If you want to calculate an OFM using oligo-nucleotides and you do not have the
respective background-frequency-file available (i.e. the “*.fre” file), you might select the
option Estimate oligonucleotide frequencies from nt frequencies. In this case only a
nucleotide frequency file is needed as background-frequency-file, and oligonucleotide
frequencies are roughly estimated based on that file. However, it is recommended
always to use a background frequency file.

If GC content, codon usage, or codon preference was selected:

- Select the Length of your model, i.e. for how many bases the model shall be calculated.

- Optionally select to score only the best reading frame. This might be useful for scoring
e.g. exon codon usage. If this option is selected, only the highest of all three scores (of
the three reading frames) will be reported.

- Optionally choose a file containing the codon usage and codon preference information
for a specific organism. The default setting uses human data.

6. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.

7. Select a Colour for the graphical representation of hits of this model in Seqool.

8. Press the Build button.

Evaluate the model using the following options:

Show parameters Display model parameters

Score sequences Score a set of sequences. Use this option to compare score distributions
of real signals and random or false sequences, and for evaluating score
thresholds. The corresponding dialog offers some options, such as the
saving of sequences above a score threshold.

An RNA binding model based on binding energy (RNAbind) Building pattern recognition models

 61

5.5. An RNA binding model based on binding energy
(RNAbind)

Module RNABind

5.5.1. Introduction

This experimental model calculates the binding energy for a given nucleotide sequence and a

RNA- or DNA-binding motif, not taking the formation of loops or bulges into account. This

model is appropriate for short binding signals, e.g. snRNA binding signals, where the formation

of loops is unlikely. The model uses default binding energies, listed below. However, energies

can be selected by the user. The overall binding energy is calculated by the sum of the

energies of all single bases.

 A C G T
A 0 0 0 -2
C 0 0 -3 0
G 0 -3 0 -1
T -2 0 -1 0

Table 5. Default binding energies used in RNAbind.

5.5.2. Example

The donor splice site is recognized by the factor U1 snRNP in the first step of splicing. This

recognition is caused by base-pairing of a short stretch of the snRNA-part with the splice site

(positions –2..+6). In human the sequence of this signal is TCCATTCA (or UCCAUUCA,

respectively). The calculation of the binding energy for a fictive test-sequence is illustrated:

U1 snRNA binding motive: t c c a t t c a

Test-sequence: a g a t g a c c

Binding energy for each base pair: -2 -3 0 -2 -1 -2 0 0

Total binding energy: -10

When scoring real constitutive donor sites and false donor splice sites (i.e. sequences found

near real donor splice sites which contain a GT dinucleotide, but are not real constitutive splice

sites), two partially overlapping score distributions are observed (Figure 49). Both distributions

are separated at an energy-threshold of about 12.5. Using this threshold, about 90 percent of

true and false donor constitutive splice sites are classified correctly.

An RNA binding model based on binding energy (RNAbind) Building pattern recognition models

 62

Figure 49. Score distributions of real (constitutive) donor splice sites and false splice sites (sequences

found near real donor splice sites containing a GT dinucleotide, but not being confirmed constitutive

splice sites). Blue - Confirmed constitutive donor sites. Red – False donor splice sites. Green -

overlapping scores. Sequences were retrieved from the Altextron database (Clark and Thanaraj 2002).

An RNA binding model based on binding energy (RNAbind) Building pattern recognition models

 63

5.5.3. Building a RNAbind model

Start the application: RNAbind

1. Select a Name for your model. Optionally add a short description.

2. Select an Alignment file containing a set of aligned sequences containing your signal.

3. Enter a Binding sequence to which putative signals will be bound to.

4. Optionally change default binding energies.

5. Select an energy Threshold. If the score of a putative hit is above this value, it is designated to
be a positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.

6. Select a Colour for the graphical representation of hits of this model in Seqool.

Evaluate the model using the following options:

Show parameters Display model parameters

Score sequences Score a set of sequences. Use this option to compare score distributions
of real signals and random or false sequences, for evaluating score
thresholds, and for testing a model. Note that the sequences should
have the same length as those of the alignment file used for training the
model. For longer sequences additional nucleotides are ignored. The
dialog offers some additional options, such as the saving of sequences
above a score threshold.

Scoring the relative position of a signal: DistM Building pattern recognition models

 64

5.6. Scoring the relative position of a signal: Dis tM

Module DistM

5.6.1. Introduction

In some cases the binding efficiency of a signal depends on its location relative to another

signal. E.g. the efficiency splicing enhancer signals or the polypyrimidine tract depend on the

distance relative to the acceptor splice site. DistM allows to estimate the distance of a signal by

scoring all subsequences within a given window size and finding the position with the highest

score, which probably represents the putative signal. For example, for including the information

of how far the polypyrimidine tract is located from the acceptor splice site, a DistM model can

be used as illustrated in Figure 50.

Figure 50. Scheme of the application of DistM: Within a given window size DistM searches for the

strongest signal (here of the polypyrimidine tract) and returns the distance of that signal relative to the

current position of the model (here the acceptor splice site).

For using a DistM model, a basic signal recognition model must first be provided for searching

a signal within the indicated region (window). DistM will report the position of the best hit within

this window (i.e. the position of the highest-scoring signal), not the score itself. Consequently,

DistM can not be used for searching signals, but it is rather used as a submodel of other higher

models, such as decision trees or neural networks.

 Intron Acceptor splice site Exon

Window in which DistM searches
for the strongest signal

Score

Most probable position of
the polypyrimidine tract

Scoring the relative position of a signal: DistM Building pattern recognition models

 65

5.6.2. Building a DistM model

Start the component: DistM, when starting up, make sure you choose the model directory containing
your model files. The path containing any submodels to be used with DistM must be indicated before
building the model. The model path can be changed by pressing the “Directory” button.

1. Select a Name for your model. Optionally add a short description.

2. Select the signal search Model which shall be used for searching the highest-scoring signal.

3. Select the Range in which to search with the specified model.

4. Press the Build button.

Evaluate the model using the following options:

Score sequences Score a set of sequences. Use this option to compare score distributions
of real signals and random or false sequences, and for evaluating score
thresholds. The corresponding dialog offers some options, such as the
saving of sequences above a score threshold.

Hybrid Models: Adding or subtracting scores of several models Combining models

 66

6. Combining models

6.1. Hybrid Models: Adding or subtracting scores of several
models

Module HyM

The combination of two models may useful for increasing the overall recognition performance.

A simple way to combine models is to add or subtract the scores of each model. This will be

demonstrated by the following simple example. The aim of this example model is to recognize

human constitutive acceptor splice sites, or in other words, to distinguish human constitutive

acceptor splice site from “false” splice sites (subsequences containing AG but not being real

splice sites). In a first step a PSSM using information content is constructed for the region -

10..+2 nt of the acceptor splice sites. A score threshold of 4.95 results in 19.7 percent false

positives (false splice sites recognized mistakenly as true splice sites) and 19.0 false negatives

(true splice sites classified as false splice sites). Since coding exons usually have a higher

codon usage, the recognition of splice sites might be enhanced by including this information to

the model. This information can be added by combining the previous PSSM (–10..+2 nt) with

two additional OFM models scoring codon usage upstream and downstream of the splice site

(24 nt length each). Both models are combined with the previous PSSM using the component

HybridModels. For combining the models each model file is loaded (button Add) and the

position where to apply each submodel is specified (option Search at position): In order to

analyse a set of true and false splice sites which contain the nucleotides +24 to +24 of the

splice sites, or false splice sites respectively, the position of the PSSM is set to +10 (from the

start of the sequence, i.e. 24-10). The OFM for codon usage is used twice, first at the beginning

of the exon (position +24 nt, since the exon begins at position 24 in the sequences), and

second at the end of the intron (position 0, since the length of the OFM is exactly 24 nt). Two

OFMs are included, because codon usage is expected to differ between exons and introns (i.e.

downstream and upstream the splice site). Since codon usage is expected to be high in the

downstream exon, the score of the respective OFM is be added to the score of the PSSM. The

codon usage of the upstream intron, on the other hand, is expected to be low. Consequently,

the score of this OFM is subtracted. The final settings of this hybrid model are shown in Figure

51. Score distributions for real and false human acceptor splice sites are shown in Figure 52.

An additional option (Search for the best hit between) allows to score the best hit for a signal

only. This might be useful when the strength of a signal shall be measured, which possibly

influences another signal. In this case the exact position of or distance between the signals

Hybrid Models: Adding or subtracting scores of several models Combining models

 67

might not be essential for their recognition, rather it might be sufficient that both signals are

observed near each other.

Figure 51. Settings for a hybrid model, comprizing one PSSM for the human acceptor splice site, and two

composition models for codon usage (see text for details).

Figure 52. Score distribution of constitutive acceptor splice sites and false splice sites (intronic

sequences near the splice sites containing AG, but not being confirmed real splice sites) calculated using

a hybrid model combining a PSSM (-10..+2, using information content), an OFM using codon usage for

the exon start (+1..24), and an OFM using codon usage for the intron end (-24..-1). The scores of the first

two models are added, the score of the last is subtracted.

Hybrid Models: Adding or subtracting scores of several models Combining models

 68

6.1.1. Building a hybrid model

Start the component: HyM, when starting up, make sure you choose the model directory containing
your model files.

1. Select a Name for your model. Optionally add a short description.

2. Add models you want to combine.

5. Specify the Position where to apply the model. E.g. use position “0” for a model for the core
acceptor splice site (covering e.g. bases –10..+2) and a model for exon codon usage (covering
e.g. the first 6 codons) at position “+10”, i.e. exon start. Alternatively, you may choose to score
only the best hit within a region, i.e. the position where the highest scoring hit was found.

6. Select if you want to Add or Subtract the model’s score.

3. Select a Score threshold. If the score of a putative hit is above this value, it is designated to be a
positive hit. This option is necessary for searching with your model in Seqool or SeqoolM.

4. Select a Colour for the graphical representation of hits of this model in Seqool.

7. Press the Build button.

Evaluate the model using the following options:

Score sequences Score a set of sequences. Use this option to compare score distributions
of real signals and random or false sequences, and for evaluating score
thresholds. The corresponding dialog offers some options, such as the
saving of sequences above a score threshold.

Combining models using decision trees Combining models

 69

6.2. Combining models using decision trees

Module DecisionTree

6.2.1. Introduction

A decision tree provides a classification method which, in signal recognition, makes a series of

observations about a putative signal and then classifies the signal by making binary decisions

(yes/no) for each observation. Graphically, decision trees are trees with bifurcations, each

bifurcation represents one decision. Figure 53 shows a simple decision tree for the recognition

of constitutive human acceptor splice sites, as an example. Acceptor splice sites are measured

by three models (results from these models are the “observations”), a PSSM for the positions –

10 to +2, and by two composition models, one for upstream codon usage (-24..-1) and another

for downstream codon usage (+1..+24). These three models represent the nodes of the tree.

For analysing splice sites, the model of each node analyses a putative signal sequence. Then,

a classification decision is made based on the resulting score of the respective model and the

process is repeated for the next node, until a terminal branch, representing the final

classification decision, is reached. In this example, the decision tree first analyses the PSSM

score. If the score of this model is below zero, then the sequence is most probably not a splice

site (see to the score distribution of this PSSM, Figure 46). So the sequence will be classified

as a False splice site. Otherwise, the sequence is analysed regarding the downstream codon

usage, which is expected to be above 0 for real splice sites. If codon usage is below 0, then the

sequence is probably not a real splice site, consequently it is classified a False splice site.

Otherwise, upstream codon (which should be low for real constitutive splice sites) usage is

analysed too. If upstream codon usage is high, then the sequence is classified again as a False

splice site. Otherwise, the sequence is finally classified as a real Acceptor splice site.

With the present score thresholds, classification performance is still insufficient, because

threshold have only been roughly guessed. Only 18.8 percent of real splice sites and 98.9

percent of false splice sites are recognized correctly. However, the module DecisionTree offers

an automatic optimisation of thresholds. The optimised thresholds improve recognition to 86

percent for both real splice sites and false splice sites (14 percent false positives and 14

percent false negatives). Note that this decision tree performs better than the hybrid model

mentioned in the previous chapter which used the same submodels.

Combining models using decision trees Combining models

 70

Figure 53. Example of a simple decision tree for the human acceptor splice site (constitutive).

6.2.2. Construction of a decision tree

In this example, the decision tree for human acceptor splice sites mentioned above will be

constructed as an example of how to use the component DecisionTree. After starting the

module DecisionTree, the tree is named and possibly a short description of the tree is provided.

This example is based on the example file ‘Acceptor splice site_human.det’, which is available

in the directory ‘Examples\DecisionTree’. However, this file will not be loaded at this point,

because it shall be demonstrated how to build a new decision tree from scratch.

Adding the first node

The construction starts with the addition of the first submodel, representing the first node in the

tree. This node is labelled Node 0 in the program. A submodel is added by pressing the Add-

button. In the next windows which opens, a table located at the top of the window lists the

nodes and models which are included in the tree so far (Figure 54). At present, no submodels

(nodes) have been added. Below that table the model for the first node (Node 0) can be chosen

by clicking on the Select-button. Now, a new dialog opens, which lists all models in the

‘\models’ directory (this is the directory which is used by default, if this directory does not exist,

then the program asks the user to select the directory containing the submodels at startup.

However, it can be changed by pressing the Directory-button). Since the models for this

example are located in the directory “Examples\DecisionTree” the directory has to be changed

PSSM (-10..+2)

Score < 0 Score ≥ 0

Downstream codon usage

CU < 0 CU ≥ 0

False splice site

False splice site Upstream codon usage

False splice site

CU < 0 CU ≥ 0

Acceptor splice site

Combining models using decision trees Combining models

 71

to this path. Then, the model ‘Acceptor splice site, human, IC (PSSM/WMM)’ is selected from

the updated model-list and the selection is confirmed by pressing the Select-button. Finally this

node is named “Acceptor site PSSM”.

In the next step, the position where to apply this first submodel has to be defined. This decision

tree shall analyse putative splice acceptor sites from the -24 to +24 nt. The PSSM which was

added for the first node only covers the range -10 to +2 nt. Consequently the search-position

has to be set to +14 (the nucleotide -24 corresponds to the search position 0, the nucleotide

+24 corresponds to the search position 48).

Now the two decisions have to be defined for the node. The decision will depend on

submodel’s score. If the score is below a certain threshold (i.e. the threshold set in the

submodel itself), then one decision will be made, otherwise the other one. The aim of this first

submodel is to exclude sequences which are clearly no splice sites and to pass those

sequences which might be to another submodel. For sequences which are not real splice sites

the PSSM will produce a low score. The decision for these sequences will consequently be to

classify them as “false” splice sites. This is done in the program by selecting the option Report

hit for in the section Action when score < threshold. Then the Text ‘False splice sites’ is added

(optionally a colour can be chosen for displaying hits in the Seqool main program). Now all

sequences which have scores below the score threshold of the PSSM, will be labelled ‘False

splice sites’.

The next step is to define how to treat sequences with a score higher or equal to the score

threshold of the PSSM. For such sequences codon usage will be analysed by another

submodel. This submodel will correspond to the next node in the tree, i.e. Node 1.

Consequently, the option Go to node is selected in the Action when score ≥ threshold box, and

the Node index is set to ‘1’ (although the respective node has not yet been defined). This

completes the settings for the first submodel (Node 0). Figure 54 shows all settings for this

node. Press OK for confirming all settings.

Combining models using decision trees Combining models

 72

Figure 54. Settings for the addition of the first node in the decision tree.

Adding more nodes

The next node introduces a model for analysing downstream codon usage. The respective

model (a codon usage composition model with the length 24 nt) is also available in the directory

‘\Examples\DecisionTree’. In order to add that model select the second row in the node list (in

the main window) by clicking into the row and then press the Add-Button. As before, the node is

named first, this node will be named ‘Downstream codon usage’. The model ‘Downstream

codon usage, 24 nt (OFM)’ is added and the search-position is set to +24, since the position is

referring to the -24..+24 region of the splice sites. Since, codon usage in exons is expected to

be high, sequences with low codon usage are labelled ‘False splice sites’. This is done by

activating Report hit in the bottom box Action when score < threshold (note that the threshold of

the codon usage model is 0). If codon usage is high, then upstream codon usage will be

analysed too. Thus the Action when score ≥ threshold is set to the next node (Node 3). Finally

all settings are confirmed by pressing OK and the last node is added. For this last node, the

model ‘Upstream codon usage, 24 nt (OFM)’ is used and the node is labelled ‘Upstream codon

usage’. For high scores, i.e. high codon usage, false splice sites will reported (set Report hit

and add the text ‘False splice site’), because true splice sites should show a low upstream

codon usage. Correspondingly, true acceptor splice sites are reported for low codon usage (set

Report hit and add the text ‘Acceptor splice site’). Finally all nodes of this decision tree have

been defined. For this example the colour ‘green’ will be selected. This completes the basic

construction of the decision tree.

Combining models using decision trees Combining models

 73

If the decision tree will be used for searching in the main programs Seqool (or SeqoolM), then

additional settings should be made. First, an additional option allows to choose a colour for

displaying hits (in this case sequences classified as ‘Acceptor splice sites’) in the program

Seqool. Additionally, the relative position where a hit should be reported by Seqool or

SeqoolM has to be selected. The present model ranges from -24 to +24. Consequently, the

splice site is located exactly in the middle, i.e. at +24 nt. In order to mark a hit exactly at the

splice site (i.e. after the AG dinucleotide) set the option Mark hit at to +24. For visualizing hits in

Seqool, the range where to paint hits can also be specified. If the red bar indicating a hit should

range from the last two intron bases to the first two bases of the exon, then the range where to

paint a hit is set to -2..+2 (options Paint hit from … to …). In this example only the intron AG

should be marked, thus the range is set to -2..-1.

Completing the tree

Finally the decision tree is complete. Before applying the tree press the button Build decision

tree, which causes the program to check all submodel files and node connections. After that,

the option Show decision tree can be used to display a simple graphical view of the tree

including the submodel files and decisions. The tree may be tested by pressing the button

Score sequences. Note that sequences for testing the tree must correspond to the length of the

tree (in this example they must range from –24 to +24 from the acceptor splice site).

6.2.3. Optimisation of thresholds

With the present score thresholds used in the submodels classification of the decision tree is

still insufficient. Remember, that the score thresholds of all submodels were simply set to 0.

These thresholds can be tuned manually in order to enhance the classification performance.

However, it is time saving to use the automatic optimisation of thresholds which is provided by

the component DecisionTree. During optimisation procedure thresholds of all (or selected

submodels) are varied by random until the classification performance of the tree improves (this

method is not as fast as the gradient descent method, but it is not that prone to get stuck in

local minima).

For optimising thresholds press the button Optimise thresholds and select the submodels

(nodes) whose threshold should be optimised (by clicking on the check boxes in the submodel

list). Select two files, one containing real signals, and the other one containing false signals

(e.g. random sequences). In the case of the example decision tree for the human acceptor

splice site one file is provided which contains real splice sites (file ‘AcceptorSpliceSite_human

_constitutive_5000seqs_-24_24_LearningSet.msa’) and another which contains false splice

Combining models using decision trees Combining models

 74

sites (file ‘FalseAcceptorSpliceSite_human_5000seqs_-24_24_LearningSet.msa’). For each file

a decision must be assigned, i.e. either the decision ‘Acceptor splice site’ or the decision ‘False

splice site’. Since the first file contains a list of real splice sites the decision ‘Acceptor splice

site’ is assigned to the first file. Correspondingly, the decision ‘False splice site’ is assigned to

the second file.

Finally it has to be specified how to do the optimisation procedure (see options at the bottom of

the optimisation dialog). The option Precision indicates the step with of random changes. For

example, when a value of 2.0 is selected, then the score thresholds of the submodels are

changed in steps of 2.0 (e.g. 2.0, 4.0, 0.0, or 6.0). The maximum deviation from the present

threshold defines the maximum variation of the thresholds. For example, if the initial threshold

is 0, the maximum deviation is 10, and the precision is 5, then the random thresholds tested are

either -10, -15, -5, 0, 5, 10, 15, or 20. The Number of runs defines how many random changes

are performed in total. If only a single node is optimised a few runs are sufficient (one run

includes one random threshold assignment and the subsequent classification of the positive

and negative sequence files). However for optimising thresholds of several submodels at the

same time many runs are needed. After some time, when acceptable thresholds have been

determined, the precision and the range of deviation can be decreased gradually, in order to

fine tune the thresholds. The option Decrease precision and deviation by 50% defines how

many runs to perform this.

Two more optimisation settings indicate what exactly should be optimised. The maximization of

the mean of correct decisions maximizes the overall recognition. However, the recognition for

the positive and negative sequence set might be very different. E.g. the mean correct

recognition might be 90 percent. But sequences from the positive set might be recognized in

100 percent of all cases while only 80 percent of the sequences of the negative are recognized

correctly. In many cases it is preferable to maximize the mean performance, but to minimize the

difference of correct decisions between both datasets at the same time too.

When running the optimisation (press button OK) the submodel’s thresholds are iteratively

changed and all sequences in both sequences sets are classified. The user is informed about

the improvement of the classification during the whole process. At the end (or when the

process is stopped by the user) the user is asked to confirm if the new thresholds should be

saved in the submodel’s files. Evidently, scores should be saved only if the scores result in an

improved classification performance. If the thresholds are far from being adequate, never save

the score thresholds, because otherwise no further optimisation might be possible: E.g. if the

optimal score threshold of a given model amounts to 0.0, then saving the model with a

Combining models using decision trees Combining models

 75

threshold of –20.0 is detrimental, because in the next optimisations the score 0 may never be

reached again, depending on the selected range of variation.

Finally it should be noted why two separate submodels for codon usage were used in this

example. The reason is the optimisation of the thresholds. The use of two separate files allows

to save two different (optimised) score thresholds in the files. If a single was used, then only a

single threshold could not be optimised separately.

Combining models using neural networks Combining models

 76

6.3. Combining models using neural networks

Module BPNet

6.3.1. Introduction

Neural networks are machine learning methods which are inspired by neurobiology. A neural

network contains several “neurons”. A neuron receives information from other neurons and

passes information to other neurons. However, in contrast to real neurons, the neurons in a

neural network are rather simplified. The connection between neurons is regulated by weights.

It is the adjustment of these weights, which allows a neural network to “learn” to recognize

some kind of pattern. Figure 55 shows a scheme of an artificial neuron.

Figure 55. Scheme of an artificial neuron. Input neurons (I1-I3) passes a signal to the neuron. The

strength of the signal from each neuron in adjusted by a weight (W1-W3). The incoming signals are

summed up and an activation function (ƒ(x)) determines the output of the neuron.

The incoming signals are summed up and evaluated by an activation function (the program

uses a sigmoid activation function, i.e. ƒ(x)=1/(1+e-x)), which determines the final output of the

neuron.

A large number of different network architectures and learning methods exist. The module

BPNet uses a backpropagation network, which is a rather universal and robust network type.

backpropagation networks consist at least of three layers of neurons, one input layer, at least

one hidden layer, and one output layer (Figure 56). The input layer comprizes neurons which

simply pass information to the hidden layer without modification. The hidden layer can be

interpreted as the basic part of the neural network, containing some kind of multidimensional

representation of all information. The final output layer shows the results of the network. A

putative signal (or pattern) is classified (or recognized) by the neural network depending on

I1

I2

I3

ƒ(x)

W1

W2

W3

Combining models using neural networks Combining models

 77

which output-neuron is activated most. Each output-neuron represents a classification decision,

e.g. one neuron may represent the decision ‘the analysed pattern is a restriction site for

EcoR1’, and the second one may represent the decision ‘the analysed pattern is not a

restriction site for EcoR1’. If the output-neuron representing the decision ‘the analysed pattern

is not a restriction site for EcoR1’ is activated most, then the neural network indicates that no

restriction site was recognized.

The number of nodes in the input layer depends on the number of signals which shall be

analysed by the network. The number of output nodes depends on the number of classes

which shall be predicted. If the outcome of a prediction is binary (e.g. is a splice site or is not a

restriction site), then two nodes are sufficient. For recognizing hand-written letters 26 output

nodes would needed. The number of neurons in the hidden layer may be arbitrary. It depends

on the specific task of the network how many nodes to use (and how many hidden layers to

use), which can be done experimentally by adding or deleting hidden neurons and observing

the performance of the network.

Figure 56. Scheme of a backpropagation network with three layers. For details see text.

Two different kinds of parameters could theoretically be adjusted during the training of a

backpropagation network, the weights and the threshold of the activation functions. In order to

adjust only the weights, a bias neuron is added to all layers, except the output layer, so that the

weights from the bias neurons adjust the threshold of the activation function.

I1

I2

I3

I4

H1

H2

H3

H4

H5

H6

O1

O2

Bias

Bias

Input-layer Hidden-layer Output-layer

Combining models using neural networks Combining models

 78

6.3.2. Training of backpropagation networks

The training process of backpropagation networks generally includes the following steps: 1.

Random initialization of all weights. 2. Presentation of data for which the classification is known.

3. Calculation of the resulting output values of each node (beginning with the input nodes and

ending with the output nodes, forward pass). 3. Comparison of the output of the output-layer

with the true classification. 4. Calculation of the mean square error for each node and

adjustment of the weights connecting to a node using a learning rule and beginning with the

output nodes and ending with the input nodes (backpropagation). 5. Repetition of all previous

steps until the mean square error is minimal.

The adjustment of each weight during training is achieved by gradient descent, i.e. by changing

a weight by a small value (learning rate) in the direction, in which the error decreases. Since

error minimization may get stuck in local minima, a momentum is usually added, which

"pushes" the weight over small local minima in the current “learning direction“ (standard

momentum algorithm). The respective learning rule including this momentum term is:

)()1(1 twOtw q

ji

q

j

q

i

q

ji ∆⋅+⋅⋅=+∆ − αδη , where q

jiw∆ is the weight change of the ith weight of node

j in layer q, q

iδ is the respective error, η is the learning rate, 1−q

jO is the output activation of the

previous layer’s neuron, and α is the momentum (ranging between 0 and 1). For a more

detailed description of neural networks see e.g. Rumelhart et al. 1986. There are also excellent

introductions to neural networks available on the internet.

6.3.3. Over-learning

Neural networks are prone to over-learning (see also chapter 6.4). Over-learning occurs when

a neural network adapts too much to the sequences in the training set and looses its ability to

abstract, which results in a good classification performance of the known sequences in the

training set, but to an insufficient classification of unfamiliar new sequences. Over-learning can

be tracked by using two different sets of sequences, one for training, and another one

exclusively to observe if over-learning is indicated (cross-verification set). BPNet allows to split

a set of sequences automatically into two sets, one for training and one cross-verification.

During the training process, the classification error (mean square error) should be observed in

both sets. When the error does not decrease for the cross-verification set any further (or if it

starts to increase again), the training process should be stopped. At this point the neural

network starts to loose its ability of abstraction.

Combining models using neural networks Combining models

 79

6.3.4. Example of a neural network for the human ac ceptor splice site

In following a simple example of a backpropagation network will be build for human constitutive

acceptor spice sites. The model will analyse the splice site from –24 to +24 nt. The same three

submodels will be used as in the previous example of a decision tree, i.e. a PSSM using

information content for the nucleotides –10 to +2 of the splice site, a composition model

measuring codon usage in the last 24 nt of the upstream intron, and a composition model

measuring codon usage in the first 24 nt of the downstream exon. These models correspond to

the input neurons of the network. The output layer of the model will consist of the two output

neurons ‘Acceptor splice site’ and ‘False splice site’. The respective example model file

‘Acceptor splice site_human.bpn’ can be found in the directory ‘Examples\BPNet’.

After starting the module BPNet, a name and a short description for this model is provided. The

first model, the PSSM, is added by pressing the Add-button. In the following dialog the directory

has first to be changed to the example directory ‘Examples\BPNet’ which contains all submodel

files used in this example. The directory is selected by pressing the Directory-button. Note that

all submodel files used for the network have to be located in one and the same directory! The

first submodel is added by selecting the model ‘Acceptor splice site, human, IC (PSSM/WMM)’

in the box Available submodels. For each submodel it has to be defined at which position

(relative to the complete model, i.e. the neural network) it has to be applied. Since the

backpropagation network will focus on the region -24..+24 nt and the PSSM covers the

nucleotides from -10 to +2, the search position 14 is entered (option Search at position), which

is the position from the start (the nucleotide -24 corresponds to the search position 0, the

nucleotide +24 corresponds to the search position 48). Finally settings are accepted by

pressing OK. Now the next model is added by pressing the Add-button again. This time the

model ‘Upstream codon usage, 24 nt (OFM)’ is selected (option Available submodels) and the

search position 0 is entered (option Search at position), since this model shall cover the

nucleotide -24 to -1. Again the settings are accepted by pressing OK. Finally the last model is

added by pressing the Add-button again. This time the model ‘Downstream codon usage, 24 nt

(OFM)’ is selected and the search position 24 is entered, since this model shall cover the

nucleotide +1 to +24. After accepting all settings by pressing OK again, all submodels are

added.

Now the settings for displaying hits should be entered. Since the model focuses on the

nucleotides -24 to +24, the actual splice site will be located at the position 24. Therefore, the

option Mark hit at is set to +24. Graphically, hits shall correspond to the AG dinucleotide of the

acceptor splice sites. Consequently, the positions for which a hit shall be displayed are the

Combining models using neural networks Combining models

 80

nucleotides -2 and -1. Enter these numbers in the respective edit fields (options Paint hit

from…to). The current settings are displayed in Figure 58.

BPNet models can be pre-processed by other model types, e.g. position specific score matrices

(PSSM). Pre-processing models are used to exclude sequences from further analysis by the

network, e.g. such sequences which are evidently not target sequences. Therefore, the use of

a pre-processing model increases the speed when scanning many sequences with a BPNet

model, and it may also be used to increase the accuracy of classification. In the present

example a simple pre-processing model will be used in order to exclude all sequences which

do not contain the AG-dinucleotide at the central position of the splice site from further analysis.

This model (a simple PSSM for the nucleotides A and G) is provided in the example directory

‘Examples\BPNet’ (file: ‘Preprocessing model_AG.psm’). To add the pre-processing model

press the button Select model in the pre-processing section. Then choose the model ‘AG

(PSSM/WMM)’ and set the search position to the +22, so that the pre-processing model covers

the AG-dinucleotide of the core splice site (see Figure 57). Finally, confirm the settings by

pressing OK. Now the model is ready for training. The final settings are shown in Figure 58.

Figure 57. Selection of the pre-processing model.

Combining models using neural networks Combining models

 81

Figure 58. Settings of a backpropagation model for human acceptor splice sites after the addition of the

submodels.

For training, two sets of sequences are needed, one set containing real acceptor splice sites

(file ‘AcceptorSpliceSite_human_constitutive_5000seqs_-24_24_LearningSet.msa’) and

another one containing false splice sites, i.e. sequences containing AG, but not being real

splice sites (file ‘FalseAcceptorSpliceSite_human_5000seqs_-24_24_LearningSet.msa’). For

optimal classification all training set should be of equal size, i.e. each should contain the same

number of sequences. Both sets will later be subdivided in order to create a training set and set

for cross-verification. By pressing the Build training set button, a dialog opens which allows to

choose all files to be used for training. Files can be added by clicking in the respective cell of

the table (column File). First the file ‘AcceptorSpliceSite_human_ constitutive_5000seqs_-

24_24_LearningSet .msa’ is chosen by clicking in the first row of the table (column File). This

file contains the confirmed, real splice sites, therefore this file is assigned to the class ‘Acceptor

splice site’ (enter the text ‘Acceptor splice site’ in the second column of the table). Next, the file

‘FalseAcceptorSpliceSite_human_5000seqs_-24_24_LearningSet.msa’ is added by clicking in

the second row of the table (column File). The assigned class is ‘False splice site’. The current

settings for building the training set are shown in Figure 59. The option Exclude sequences with

Combining models using neural networks Combining models

 82

a bad score should be activated. This excludes all sequences, which contain invalid letters

(other letters than those allowed for the current molecule, e.g. for DNA only A, G C, and T are

allowed) or which are too short. Since scores can not be calculated for these sequences, the

respective submodels report a score of -100. The option Display scores shows each score of

each submodel and for each sequence.

Figure 59. Settings of the dialog for building the training set.

After pressing Continue, another dialog appears for adding additional settings which are only

relevant when the network is used in the main programs Seqool or SeqoolM. This dialog

allows to select the colour for the graphical display of hits and which class not to report. For this

example, only real splice sites should be reported. Therefore, the option Don’t report hits for

class is set to the class ‘False splice site’. For the displaying hits of real splice sites the colour

red is selected by clicking in the respective row of the table. Figure 60 shows the settings for

this dialog.

Figure 60. Settings for the display of hits for the main programs Seqool and SeqoolM.

Combining models using neural networks Combining models

 83

After pressing Continue, scores are calculated for all submodels and all sequences which are

provided in the two given files of real and false acceptor sites. Subsequently, a final dialog

appears, which prompts the user to split the total set into a training set and a set for cross-

verification of given size (Figure 61). This dialog proposes a subdivision into two equally sized

halves. However, the user is free to change the size of the subsets or even to select not to use

a cross-verification set. After pressing Continue, the sets are built and saved into a temporary

file.

Figure 61. Dialog for the subdivision into a training set and a set for cross-verification.

The network is trained by pressing the Train network button, which opens a new window with a

variety of options. In the top of the window, a graph shows the change of the error (mean

square error) of the network during the training process. This error will be shown for the training

set and the cross-verification set. On the right side of that graph, some basic information is

listed, i.e. the number of training process performed (epoch), the mean square error (MSE) of

the training and the cross-verification set, and the performance of the network for both subsets

(training and cross-verification).

Settings: Network architecture

The lower boxes allow to make settings for the network and the training process. The network

architecture can be changed by setting the number of layers (three layers, i.e. one input, one

hidden, and one output layer, are usually sufficient). The number of input neurons corresponds

to the number of submodels used. The best number of hidden neurons (Hidden units layer 1 or

layer 2) should be determined experimentally. The number of output neurons is defined by the

number of classes used. In this case two classes (‘False splice site’ and ‘Acceptor splice site’)

were defined.

Settings: Training settings

The learning rate (η) determines the speed of the learning process. A high value increases the

speed, but decreases accuracy. The momentum is the value α (see introduction). The default

Combining models using neural networks Combining models

 84

value will usually perform well. The option randomise weights before start has to be activated

for the initial training process. If the initial training was insufficient and the network has to be

trained further, then this option can be deactivated. Batch- and Online-training refers to the

training method. For online training, weights are adjusted after each single sequence of the

training set. For batch training, weights are adjusted only after scoring all sequences. This

results generally in a higher accuracy, but it slows the training process down.

For each sequence each output neuron will have an output activation ranging from 0 to 1. For

example the output neuron for the class ‘Acceptor splice site’ and the class ‘False splice site’

might amount to 0.90 and 0.03, respectively. The neuron which shows the strongest activation

shows the most probable class of the given sequence. In this case the activation is strongest

for the class ‘Acceptor splice site’ which indicates that the sequence is probably a real splice

site. The high activation of this node compared to the low activation of the other node shows

that the classification is quite reliable, whereas activations of 0.60 and 0.48 would indicate an

unreliable classification. The accept threshold determines at which output activation to accept a

classification of a sequence. This allows to exclude classifications which are not very reliable.

In the present example all sequences will be classified, so the accept threshold is set to 0.5.

Settings: Stop training

The training process can either be stopped after a given epoch, in dependence of the mean

square error, or if the mean square errors of the training and the cross-verification set indicate

over-learning. An alternative way for avoiding over-learning is to estimate the epoch when over-

learning begins by trial and error.

Display options

During the training process the changing weights of the neural network can be shown

graphically. Options for customizing the display include Display connection weights, Actualize

after each epoch, and Display models and classes.

Training

For this example a neural network with one hidden layer and 10 hidden neurons will be used.

The training method batch-training is selected, a learning rate of 0.5 is selected, and the

training will be stopped after 2000 epochs. For the remaining training settings default values will

be used. The training is started by pressing the Train-button. Figure 62 shows the decrease of

the mean square error of the neural network during the first 1000 epochs.

Combining models using neural networks Combining models

 85

Figure 62. Mean square error (MSE) decrease during the training process of the backpropagation

network (x-axis: number of epochs).

After training for 2000 epochs, the final classification performance was 87.9 percent for the

training set and 87.4 percent for the cross-verification set. Over-learning was not indicated,

since the mean square error of the cross-verification set continuously decreased. Figure 63

shows the architecture of the trained network. Notably, the strongest weights (absolute values)

in the input layer are found for the PSSM submodel and the model for downstream codon

usage. This indicates that these models are more relevant for splice site recognition than the

model for upstream codon usage.

Figure 63. Architecture of the trained backpropagation network for constitutive human acceptor splice

sites. Red connections between neurons indicate positive weights, blue connections indicate negative

weights. The absolute value of weights is reflected the thickness of the connections.

More details about the classification performance can be displayed by pressing the Classify-

button. This information includes the number of false and true positives and negatives, and the

relation of correctly identified (more correctly classified) sequences in relation to the total

PSSM using information
content (-10..+2)

Upstream codon
composition (+1..+24)

Downstream codon
composition (-24..-1)

Acceptor splice site

False splice site

Bias neuron

Bias neuron

Combining models using neural networks Combining models

 86

number of sequences C/(C+W). It results that 91.1 percent of real acceptor sites and 84.7

percent of false acceptor splice sites is classified correctly for the cross-verification set (see

Figure 64), which is a notable increase compared to the classification performance of the

decision tree example presented earlier. However, the performance could still be increased by

including more information of the sequences, e.g. hexamer frequencies (as in the default

BPNet acceptor splice site model provided with Seqool). The sensitivity and specificity of the

example model can easily be obtained using the results in the classification dialog (Figure 64,

verification set!).

Figure 64. Classification performance of the neural network for the training set and the cross-verification

set.

The sensitivity is the fraction of correctly identified signals, i.e. the number of true positives (TP)

relative to the number of all true signals (true positives and false negatives, FN, together). For

the present model 2266 true positives (correctly identified splice sites, see Figure 64) and 219

false negatives (not recognized real splice sites) were observed. Additionally, 2 sequences

could not be classified (NC). Then the sensitivity amounts to TP / (TP+FN+NC) = 2266 /

(2266+219+2) = 0.911, or 91.1 percent. The specificity is the fraction of true negatives relative

to the number of all false signals. In the present example, 2120 true negatives were identified,

while 380 (and 3 unclassified sequences) were not correctly recognized. Therefore the

specificity amounts to TN / (FP+TN+NC) = 2120 / (380+2120+3) = 0.847 or 84.7 percent. It

becomes clear, that the performance values listed in the classification-dialog are in fact the

sensitivity and the specificity. In the dialog, these values are only labelled performance,

because one might use many more classes for classification, not just one “true” (here for the

real splice sites) and one “false” class (here for the false splice sites).

Over-learning Combining models

 87

6.4. Over-learning

Over-learning refers to the process that a model extracts too much information from the training

set during training. It then enhances the recognition of the sequences in the training set, but it

looses the ability of abstraction, which leads to a decreased recognition of sequences which

are not part of the training set. Over-learning must be dealt with, especially in neural networks,

but also in decision trees, where the automatic optimisation of thresholds represents a learning

process. Over-learning can be detected by the use of cross-verification set during training. In

the PSSMs, MDDs, or OFMs, pseudocounts (or providing expected frequencies for words

which are not included in the training set) help to prevent that a model sticks too much to the

sequences it was built on.

One effective method for preventing over-learning is to divide all the sequences into a training

set, used for the actual training of the model, and a cross-verification set, used to detect over-

learning. At the beginning of the training process the recognition performance should increase

for both sets. After a certain point, the recognition performance will still decrease for the training

set, but increase for the cross-verification set. This indicates over-learning and the training

process should be stopped at this point (Figure 65).

Figure 65. Scheme of the learning process for a training set (red line) and set for cross verification (blue

line). After a beginning increase of performance for both datasets, the performance starts to decrease for

the cross-verification set, while it still increases for the training set. This indicates over-learning.

Training process

Performance

Best performance

Over-learning

Functions FastAFormat - formatting sequences and much more

 88

7. FastAFormat - formatting sequences and
much more

FastAFormat allows various functions for extraction and manipulation, and formatting of

sequence or text files. For selecting an input file press Open infile. The selected file is displayed

in the upper text field (for very large files, it might me useful deactivate the option Preview infile,

which prevents files being displayed). A number of options are accessible on different program

pages. Select any options in a given sheet and press Process sequence. In the opening file

dialog select the location where the processed file is saved to.

7.1. Functions

Tab-sheet Format FastA: Formatting FastA files

Get subsequences Get a subsequence of a given range

Filter sequences Filter sequences which are shorter or longer than a given size

Read sequences from end Create reverse sequences (this is not equal to creating a homologous

strand)

Revert sequences to Creates the homologous strand of a sequence (only for DNA)
homologous strand

Convert sequence to Converts the sequence letters to lower or upper case

Break lines longer than Creates line breaks after a given number of chars

Add sequence number Adds the number of each sequence in after the ‘>’ character

Tab-sheet Get FastA: Creating FastA files

This page is intended for extracting sequences from unconventional file formats. The use is

illustrated by the following example:

ID: 1859562Hg6
Sequence: aatgctagcttcgcgtatcaxgcgacgtgacagtttcccca ag
 ggctcgatcggatcgatgctagctagctgatcgatcgtagc ta
 gcgcgtatcgctatcgtagctagctagctgatcgatcgtag ct
 gcgcgattctctatcgtagtctactatctctactagcatga tc
 atctgatcgatcgtagctagcgcgataacgatatacaacta

Functions FastAFormat - formatting sequences and much more

 89

Description Enter the text indicating that a line contains a description or ID. (In
the example enter ‘ID:’)

Add ‘>’ character Add ‘>’ to the description if necessary (In the example, the line
containing the ID does not include the ‘>’ character necessary for
FastA-files, therefore this option has to be activated)

Add line number optionally add the number of each sequence to the description

Get sequences staring Enter the text indicating the begin of a sequence (in the example
with text enter ‘Sequence: ‘)

Cut letters on the left/right Optionally adjust how many letters have to be cut on each side of
of lines a line, if a sequence does not cover the whole line (in the example 9

letters have to cut on the left of each line)

Preview Press preview to test if sequences are extracted correctly

Tab-sheet Format text

Range and length

Get columns Extract a given column from a text file. Columns can be recognized
automatically when indicated by tabs or spaces, other wise it has to
be indicated which character defines a column.

Truncate lines Cut a given number of characters from the left or right of each line

Get substring Extract a substring from each line

a) Number of chars to copy Extract a given number of characters from one side of a line

b) Save strings containing Extracts a subsequence from each line if a line contains a

given substring. The subsequences can be extracted including
neighbouring characters (options “from” and “to”).

 c) Save substring from…to… Extract a subsequence from within a line

Additional filters

Save lines if/if not Save lines only under certain conditions

a) Character found at Save/do not save lines if a given character is found at a given
 position… position

b) Column equals… Save/do not save lines if a given text is found in a given column

 c) Line contains Save/do not save lines if lines contain a given substring

Delete empty lines Do not save empty lines or lines containing only spaces

Functions FastAFormat - formatting sequences and much more

 90

Tab-sheet Misc. text

Replace with Replace any text with another text (optionally case sensitive)

Convert to Convert to upper /lower case

Save no. of lines Save a given number of lines only (from the begin)

Fill lines with character Fill the end of each line with a given character until the length of the
until length is… line equals a given number

Tab-sheet Get random lines

Get a given number of lines from a file. Lines are selected by random.

Functions Distribution and download of models from the Seqool website

 91

8. Distribution and download of models from
the Seqool website

Seqool users are encouraged to publish their own models to the scientific community if they are

of scientific significance. The Seqool website provides an interface for registered users for

uploading their models, and for downloading models published by other users (Figure 66). For

model download login at http://www.biossc.de/seqool/download.html and proceed to the

download area. Then click on a model name for download and copy the model file in your

model directory (by default this is the directory “/models”, however you might have changed

that). Models which contain several submodels (decision trees, backpropagation networks,

hybrid models) can be downloaded as zip-files. For using these models extract the respective

files into the model directory. Note that any file downloaded from the internet and consequently

also models uploaded by other users may possibly be infected with viruses. Although users

may only upload Seqool models and zip-files, it is recommended to scan recently downloaded

files, especially zip-files for viruses before use.

Figure 66. The download area of the Seqool website provides and interface for down- and uploading

models which can be used with the Seqool program package.

For uploading a model provide a model name (e.g. the name of the binding factor) and a

description of the model, which should include the model type (e.g. PSSM), the length of

model, and other relevant information. If the model has been referred to in a published article,

you may also include the reference to that article. Finally select the model file to upload the

model. Simple models which contain only a single file (WMM, PSSM, MDD, profile HMM,

Functions Distribution and download of models from the Seqool website

 92

RNABind, OFM) may be uploaded directly. Models which include submodels (such as decision

trees, backpropagation networks, or hybrid models) must first be compressed to a single zip-

file. This zip-file must include the main model file and all necessary submodel files. The zip-file

may then be uploaded.

Figure 67. Users may access and delete their own models after clicking on “Access models provided

by…”.

When preparing a model which contains many submodels for upload, it is recommended to

modify the model file extensions. Instead of using “xxxxx.xxx” use “xxxxx.xxx_”. E.g. instead of

using “model.psm” use “model.psm_”. This will prevent that submodels are visible in the

programs Seqool or SeqoolM. For example, a decision tree may contain many submodels.

These submodels might never be used alone, i.e. outside the decision tree. But since they are

located within the model directory (together with the main model, the decision tree) they also

appear in the model lists of Seqool and SeqoolM, enlarging that list unnecessarily. However, if

the submodels are named e.g. “model.psm_” instead of “model.psm” then they disappear from

the model lists of Seqool and SeqoolM.

Functions References

 93

9. References

Banerjee H., Rahn A., Davis W. and Singh R. 2003. Sex lethal and U2 small nuclear

ribonucleoprotein auxiliary factor (U2AF65) recognize polypyrimidine tracts using multiple

modes of binding. RNA 9, 88-99.

Burge C. and Karlin S. 1997. Prediction of complete gene structures in human genomic DNA. J.

Mol. Biol., 268, 78-94.

Burset M. and Guigo R. 1996. Evaluation of gene structure prediction programs. Genomics 34:

353-367.

Clark F. and Thanaraj T.A. 2002. Catergorization and characterization of transcript confirmed

constitutively and alternatively spliced introns and exons from human. Hum. Mol. Gen. 11,

451-464.

Durbin R., Eddy S., Krogh A., and Mitchison G. 1998. Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge

– New York.

Gribskov M., Devereux J., and Burgess R.B. 1984. The codon preference plot: graphic analysis

of protein coding sequences and prediction of gene expression. Nucleic Acids Res. 12: 539-

549.

Rumelhart D.E., Hinton G.E., and Williams R.J. 1986. Learning, internal representation by error

propagation. In: Rumelhart D.E. and McClelland J.L (eds.). Parallel Distributed Processing:

Explorations in the microstructures of cognition, Vol. 1., MIT Press, Cambridge, MA.

Schneider T.D. 1997. Information content of individual genetic sequences. J. Theor. Biol., 189,

427-441.

Schneider T.D., Stormo G.D., Gold L. and Ehrenfeuch A. 1986. The information content of

binding sites on nucleotide sequences. J. Mol. Biol., 188, 415-431.

Senapathy P., Shapiro M.B., and Harris N.L. 1990. Splice junctions, branch point sites, and

exons: sequence statistics, identifications, and applications to Genome Project. Methods

Enzymol. 183: 252–278.

File formats used in Seqool Appendix

 94

10. Appendix

10.1. File formats used in Seqool

Alignment files (plain text) are used for building models, such as profiles. The include raw

sequences:

gagtctgtgttttgtgggtggcaggtggggagacagaagaggagaaga
ggtgacagctgttttctgcctcaggagaaactgaagccagaatacttg
ccacacattcttggccttctgcagatcacctttgtagatttcctcgcc
ctcgcgggcgtgtgcgcgccgcaggctggcggtaaggctggaaaggac
ctcgcgggcgtgtgcgcgccgcaggctggcggtaaggctggaaaggac
gtttgtgtatgcttaaaatttaagttcccagtgggccgtattcatcga
caactgacagattctgccttttaggtacttgaactggcaggaaatgca
ccggccctcttctctgtcccccagctcagcaacagcacgacggctggc
ttgattgccctcctcccactgcagatccattacaccggctgctctatg
cagaactcttt…

Frequency files (and background frequency files, *.fre) contain frequencies of nucleotides or

oligonucleotides. (oligo-)nucleotides. The following file contains the typical DNA base

frequencies of human exons:

0.243001 ← Adenine

0.27215 ← Cytosine

0.279091 ← Guanine

0.205758 ← Thymine

Frequency files list only the frequencies and not the (oligo-) nucleotides to which the

frequencies refer1. However, frequencies are listed in the following order: A, C, G, T.

Oligonucleotide frequencies are listed analogously, e.g. for dinucleotides the order is: AA, AC,

AG, AT, CA, CC, CG, CT.

Word reference set files (*.ref) are used to extract over- or under-represented words (e.g.

oligonucleotides) from a set of sequences in SeqoolM. They contain a list of all words found in

a reference set, their respective frequency, and the percentage of sequences in which the word

was found.

1 Frequency files do not include the names of (oligo-) nucleotides because they are ment to be applied in

Seqool applications only; for creating a table including (oligo-) nucleotides and the respective

frequencies simply use the function Statistics|Oligonucleotides (see chapter 4.3.3).

File formats used in Seqool Appendix

 95

cga <- word
0.004 <- frequency of word
0.2 <- percentage of sequences in which word was found
acg
0.00443103
0.21
cgt
0.00446552
0.217
…

Performance of example models Appendix

 96

10.2. Performance of example models

Mode name Model type Sensitivity Specificity TP, FN,
TN, FP

Acceptor splice site, human, IC (-15..+2) PSSM / WMM 0.909 0.905 90.9 %, 9.1 %,
90.5 %, 9.5 %

Acceptor splice site, human (-36..+24) Neural
network 0.942 0.914 94.2 %, 5.8 %,

91.4 %, 8.6 %

Donor splice site, human (-15..+10) MDD 0.928 0.925 92.8 %, 7.2 %,
92.5 %, 7.5 %

Donor splice site, human (-15..+10) Neural
network

0.950 0.922 95.0 %, 5.0 %
92.2 %, 7.8 %

Table 6. Performance of example models for the recognition of constitutive human splice sites provided

with Seqool.

